
Digital Object Identifier (DOI) 10.1007/s00220-012-1502-3
Commun. Math. Phys. 314, 509–523 (2012) Communications in

Mathematical
Physics

On the Quasi-linear Elliptic PDE
−∇ · (∇u/

√
1 − |∇u|2) = 4π

∑
k akδsk

in Physics and Geometry

Michael K.-H. Kiessling

Department of Mathematics, Rutgers, The State University of New Jersey, 110 Frelinghuysen Rd.,
Piscataway, NJ 08854, USA. E-mail: miki@math.rutgers.edu

Received: 20 July 2011 / Accepted: 29 November 2011
Published online: 16 June 2012 – © The Author(s) 2012

Abstract: It is shown that for each finite number N of Dirac measures δsn supported
at points sn ∈ R

3 with given amplitudes an ∈ R\{0} there exists a unique real-valued
function u ∈ C0,1(R3), vanishing at infinity, which distributionally solves the quasi-lin-
ear elliptic partial differential equation of divergence form −∇ · (∇u/

√
1 − |∇u|2) =

4π
∑N

n=1 anδsn . Moreover, u ∈ Cω(R3\{sn}N
n=1). The result can be interpreted in at

least two ways: (a) for any number N of point charges of arbitrary magnitude and sign at
prescribed locations sn in three-dimensional Euclidean space there exists a unique elec-
trostatic field which satisfies the Maxwell-Born-Infeld field equations smoothly away
from the point charges and vanishes as |s| → ∞; (b) for any number N of integral mean
curvatures assigned to locations sn ∈ R

3 ⊂ R
1,3 there exists a unique asymptotically

flat, almost everywhere space-like maximal slice with point defects of Minkowski space-
time R

1,3, having lightcone singularities over the sn but being smooth otherwise, and
whose height function vanishes as |s| → ∞. No struts between the point singularities
ever occur.

1. Introduction

In this paper we will prove the existence of unique, essentially smooth distributional
solutions to the quasi-linear elliptic partial differential problem of divergence form

∇ · ∇ u(s)
√

1 − |∇u(s)|2 + 4π
N∑

n=1

anδsn (s) = 0 for s ∈ R
3, (1)

u(s) → 0 as |s| → ∞; (2)

Copyright © 2012 by the authors. This paper may be reproduced, in its entirety, for non-commercial
purposes.
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here, δsn is the unit Dirac measure supported at sn ∈ R
3, and the an ∈ R\{0} are

amplitudes. More precisely, we will prove the following theorem:

Theorem 1.1. For any finite sets {sn}N
n=1 ⊂ R

3 and {an}N
n=1 ⊂ R\{0} there exists a

unique real function u ∈ C0,1(R3) which solves (1), (2) in the sense of distributions.
Furthermore, |∇u(s)| < 1 for s ∈ R

3\{sn}N
n=1, and lims→sn |∇u(s)| = 1 for each sn.

Thus, u ∈ Cω(R3\{sn}N
n=1).

Remark 1.2. Evidently our theorem allows that some of the support points for the Dirac
measures coincide; however, any such situation is identical to a reformulation of the
problem with fewer but distinct points, with a re-assignment of amplitude values. Thus,
without loss of generality we will henceforth assume that all the sn are distinct. The
amplitudes may or may not be distinct, though.

Our result has applications in physics and geometry. It governs objects as diverse
as, on the one hand, the classical electrostatic fields of the Maxwell-Born-Infeld field
theory [BoIn1934,Pry1935b,Gib1998,Kie2004a], and maximal spacelike hypersurfac-
es with lightcone defects in the Minkowski spacetime [BaSi1982,Eck1986,KlMi1993,
Kly1995,Kly2003] on the other. Applications are discussed in Sect. 4.

Curiously enough, given the attention that these areas of research have received in
the literature, the existence of solutions to (1), (2) as ascertained in Theorem 1.1 has
been an unsettled problem. Of course, there is the explicit solution of (1), (2) for N = 1
found by Born [Bor1933] and elaborated on further in [Bor1934,BoIn1934,BaSi1982,
Eck1986,Gib1998]; it is well-defined for any value of its amplitude a. There is also a
semi-explicit solution of (1) (which violates (2), though) for N = ∞ found by Hoppe
[Hop1994] and further elaborated on in [Hop1995,Gib1998]; it has positive and negative
amplitude Dirac sources of magnitude |a| arranged in a cubic lattice and exists for arbi-
trary |a|. However, to the best of our knowledge, generic existence theorems for solutions
to (1) have so far been established only: (a) in [KlMi1993,Kly1995] under smallness
conditions1 for the an when (1) is restricted to (bounded or unbounded) domains with
boundary with Dirichlet data replacing (2); (b) in [Kly2003] for arbitrary an but with (2)
replaced by prescribing u(sn) = un , restricted by the bounds |un − um | < |sn − sm | for
1 ≤ n < m ≤ N — in this case (2) is generically violated, and it doesn’t follow from
the proof in [Kly2003] whether (2) can hold for some particular choices of {un}N

n=1 ⊂ R

and {an}N
n=1 ⊂ R\{0}, given {sn}N

n=1 ⊂ R
3. Our Theorem 1.1 does not follow from

adapting the proofs in [KlMi1993,Kly1995, or Kly2003]. In fact, our arguments also
extend to the Dirichlet problem in domains with boundary, as will become clear from
our proof.

As do their proofs of their theorems in [KlMi1993,Kly1995, and Kly2003], our proof
of Theorem 1.1 makes convenient use of the results by Bartnik and Simon [BaSi1982].
Explicitly, in [BaSi1982] Bartnik and Simon prove a number of results for the Dirich-
let problem of (1) in bounded domains (with almost arbitrarily irregular boundary!),
and they also outline how to pass to unbounded domains using barrier functions as in
[Tre1982]. From their results one can extract the following theorem:

Theorem 1.3 (Essentially Bartnik–Simon). For any finite set {sn}N
n=1 ⊂ R

3 of distinct
points and any finite set {un}N

n=1 ⊂ R, restricted by the bounds

|un − um | < |sn − sm | for 1 ≤ n < m ≤ N , (3)

1 We note that the review of Klyachin’s paper [Kly1995] in Mathematical Reviews incorrectly claims that
existence was proved for arbitrary amplitudes.
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there exists a unique real function u ∈ C0,1(R3) which weakly solves

∇ · ∇ u(s)
√

1 − |∇u(s)|2 = 0 for s ∈ R
3\{sn}N

n=1, (4)

u(s) → un as s → sn, (5)

u(s) → 0 as |s| → ∞. (6)

Furthermore, |∇u(s)| < 1 for s ∈ R
3\{sn}N

n=1, and u ∈ Cω(R3\{sn}N
n=1).

Theorem 1.3 basically reduces the proof of our Theorem 1.1 to variational argu-
ments which show that for each set of amplitudes {an}N

n=1 ⊂ R\{0} associated with
the points {sn}N

n=1 ⊂ R
3 there exists a unique distributional C0,1(R3) solution u(s) of

(1), (2) for which |u(sn) − u(sm)| < |sn − sm | for 1 ≤ n < m ≤ N . The claim that
lim|s−sn |→0 |∇u(s)| = 1 then follows from:

Theorem 1.4 (Rephrasing of Theorem 1.5 in [Eck1986]). Let u(s) be as in Theorem
1.3. Then either u(s) can be analytically continued into sn or

lim|s−sn |→0
|∇u(s)| = 1.

Thus, genuine singularities of u(s) are lightcone singularities.

In Sect. 2 we formulate our variational approach to (1), (2) and prove existence of a
unique optimizer u ∈ C0,1

0 (R3)with |∇u| ≤ 1. In Sect. 3 we show with a dual variational
argument that |u(sn)− u(sm)| < |sn − sm | for 1 ≤ n < m ≤ N . Afterwards, in Sect. 4,
we discuss applications to physics and geometry. In Sect. 5 we list a few straightforward
extensions of our main theorem, only indicating their proofs. In Sect. 6 we conclude
with a list of desirable extensions.

2. The Variational Approach

In this section we prove:

Proposition 2.1. There exists a unique u ∈ C0,1
0 (R3) ∩ {v : |∇v| ≤ 1} for which

0 =
∫

R3

(
∇ψ(s) · ∇u(s)

√
1 − |∇u(s)|2 − 4πψ(s)

∑

1≤n≤N

anδsn (s)
)

d3s (7)

holds for all ψ ∈ C∞
0 (R

3), where ∇u denotes weak derivative and where d3s is three-
dimensional Lebesgue measure.

Thus, u ∈ C0,1
0 (R3) ∩ {v : |∇v| ≤ 1} is a distributional solution of (1), (2).

2.1. Preliminary considerations. Equation (1) is the formal Euler-Lagrange equation
for the variational principle

F(v) =
∫

R3

(
1 −

√
1 − |∇v(s)|2 − 4πv(s)

∑

1≤n≤N

anδsn (s)
)

d3s → min (8)
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over a suitable set of functions v, and (7) is its weak version. In particular, if
C0

b (R
3) ∩ C1

b(R
3\{sn}N

n=1) denotes the Banach space of bounded continuous real
functions on R

3 which have a bounded continuous derivative on the indicated punc-
tured domain, equipped with their usual norm, then F is well-defined for those
v ∈ C0

b (R
3) ∩ C1

b(R
3\{sn}N

n=1) which satisfy |∇v| ≤ 1 on R
3\{sn}N

n=1 and which
vanish sufficiently fast as |s| → ∞; in particular, |∇v(s)| = O(|s|−2) is fast enough.
Eventually, in Sect. 3, we will show that F does take its minimizer on this set of func-
tions. However, since the indicated Banach spaces are not convenient spaces to work
with, here we shall characterize (8) as upper limit of a sequence of variational functionals
which are defined on larger, more convenient spaces of functions. The minimizer of F
will be obtained as the limit of a family of minimizers of these approximating variational
principles. In particular, we show that the minimizer solves (7).

2.2. A monotone family of variational principles. For x ≥ 0 we define the extended
real-valued function

f (x) =
{

1 − √
1 − x for x ∈ [0, 1]

∞ for x > 1
. (9)

The K th Taylor polynomial of f about x = 0, given by

TayK [ f ](x |0) =
K∑

k=0

f (k)(0)xk, (10)

has Taylor coefficients

f (k)(0) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for k = 0

1
2 for k = 1

(2k−3)!!
(2k)!! for k > 1

, (11)

so that Tay[ f ](x |0) ≡ {
TayK [ f ](x |0)}∞

K=1, the Maclaurin series of f (x), viz.

Tay[ f ](x |0) = 1

2
x +

∞∑

k=2

(2k − 3)!!
(2k)!! xk, (12)

is a pointwise strictly increasing sequence of strictly convex, strictly increasing func-
tions of x > 0 which vanish at x = 0. The series (12) converges absolutely to f (x) for
x ∈ [0, 1] but diverges for x > 1; since all coefficients are positive, TayK [ f ](x |0) ↗ ∞
for x > 1, so we are entitled to say that Tay[ f ](x |0) actually converges to the extended
real-valued function f (x) for all x ≥ 0. In the following, for brevity we shall simply
write fK (x) for TayK [ f ](x |0).

With the help of the Taylor polynomials we now define the family of functionals

FK (v) =
∫

R3

(
fK

(
|∇v|2

)
− 4πv(s)

∑

1≤n≤N

anδsn (s)
)

d3s, (13)
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which for K ≥ 2 are well-defined2 on
⋂

1≤k≤K Ẇ 1,2k
0 (R3). For the |∇v| term this is

seen right away from the definition of Ẇ 1,2k
0 (R3) as the closure of the compactly sup-

ported C∞ functions on R
3 w.r.t. ‖v‖2k

Ẇ 1,2k
0 (R3)

≡ ∫
R3 |∇v(s)|2kd3s, so that for v ∈

⋂
1≤k≤K Ẇ 1,2k

0 (R3) we have fK (|∇v|2) ∈ L1(R3). To see that also the source term in

(13) is well-defined we note that Ẇ 1,2k
0 (R3) ⊂ W 1,2k

loc (R3) so that we can apply Sobo-
lev’s original embedding theorem, according to which for any ball B ⊂ R

3 we have3

W 1,2k(B) ↪→ C0
b (B) whenever k ≥ 2, and conclude that δsn ∈ Ẇ −1,(2k)′

0 (R3) for all

k ≥ 2. This establishes that FK is well-defined on
⋂

1≤k≤K Ẇ 1,2k
0 (R3) for K ≥ 2, and

any finite N . Incidentally, since elements of Ẇ 1,2
0 (R3) tend to zero at spatial infinity4

a.e., we see that the v ∈ ⋂
1≤k≤K Ẇ 1,2k

0 (R3) with K ≥ 2 are in fact equivalent to a
subset of the bounded continuous functions on R

3 which vanish at spatial infinity.
Let A ≡ ⋂

1≤k≤∞ Ẇ 1,2k
0 (R3) ∩ {v : |∇v| ≤ 1} be the set of admissible (equiva-

lence classes of) functions for F . Since A ⊂ ⋂
1≤k≤K Ẇ 1,2k

0 (R3) for all K ∈ N, and
since fK (x) ↗ f (x) for all x ≥ 0, monotone convergence now yields that F(v) =
limK→∞ FK (v) for all v ∈ A .

2.3. Existence of a family of unique minimizers. For each K ≥ 2, the functional FK is
clearly convex over

⋂
1≤k≤K Ẇ 1,2k

0 (R3). Moreover, FK is bounded below and coercive

w.r.t. the topology of
⋂

1≤k≤K Ẇ 1,2k
0 (R3) whenever K ≥ 2. To see this we have to

estimate the source term in FK .
We rewrite FK as

FK (v) =
K∑

k=1

ck‖v‖2k
Ẇ 1,2k

0 (R3)
− 4π

∑

1≤n≤N

anv(sn), (14)

where ck = f (k)(0) > 0. Now {sn}N
n=1 is given, so there exists an open ball B ⊂ R

3 such

that {sn}N
n=1 ⊂ B. Since the restriction of any v ∈ Ẇ 1,4

0 (R3) to B is in Ẇ 1,4(B), and since
Ẇ 1,4(B) ⊂ W 1,4(B) (though no embedding, clearly), we can apply the Sobolev embed-
ding theorem in the form W 1,4(B) ↪→ C0

b (B), and using |an| ≤ max1≤n≤N |an| < ∞,
for all K ≥ 2 we obtain the estimate

FK (v) ≥
K∑

k=1

ck‖v‖2k
Ẇ 1,2k

0 (R3)
− 4πN A‖v‖W 1,4(B), (15)

where A is a positive constant. Now ‖v‖4
W 1,4(B) = ‖v‖4

L4(B) + ‖∇v‖4
L4(B), so that

‖v‖W 1,4(B) ≤ ‖v‖L4(B) + ‖∇v‖L4(B). Next, since v ∈ Ẇ 1,4
0 (R3) for K ≥ 2, we have the

nontrivial estimate ‖∇v‖L4(B) ≤ ‖v‖Ẇ 1,4
0 (R3)

< ∞. Furthermore, by Hölder’s inequal-

ity, ‖v‖L4(B) ≤ |B|1/12‖v‖L6(B), and the special case Ẇ 1,2
0 (R3) ↪→ L6(R3)of Sobolev’s

2 The functional F1 is not well-defined on the “canonical” domain of the Dirichlet integral, which is
Ẇ 1,2

0 (R3), for which reason we don’t have any use for FK when K = 1.
3 By the Sobolev-Morrey embedding theorem we even have W 1,2k (B) ↪→ C0,1−3/2k (B) for k ≥ 2 and

any B ⊂ R
3.

4 This is not true for all elements of Ẇ 1,2k
0 (R3) when k ≥ 2.
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embedding theorem then yields the estimate ‖v‖L4(B) ≤ |B|1/12S‖v‖Ẇ 1,2
0 (R3)

< ∞,

where S > 0 is the sharp Sobolev constant. And so, for K ≥ 2 we find

FK (v) ≥
K∑

k=1

ck‖v‖2k
Ẇ 1,2k

0 (R3)
− 4πN

(
A′‖v‖Ẇ 1,2

0 (R3)
+ A‖v‖Ẇ 1,4

0 (R3)

)
, (16)

where A′ is another positive constant. This lower estimate for FK is manifestly bounded
below and coercive on

⋂
1≤k≤K Ẇ 1,2k

0 (R3)whenever K ≥ 2. Therefore, for each K ≥ 2

the functional FK takes on a unique minimum for some vK ∈ ⋂
1≤k≤K Ẇ 1,2k

0 (R3). We
set FK (vK ) ≡ FK .

2.4. Weak convergence of the family of minimizers. Since FK = FK (vK ) > FK ′(vK ) ≥
FK ′(vK ′) = FK ′ whenever K > K ′, the minimum values FK of the family of variational
functionals form a strictly monotonic increasing sequence. And since fK (x) < f (x)
for all K when x > 0, this sequence {FK }∞K=2 is bounded above by F(v̂), where
v̂ ∈ C0,1(R3) is the following convenient trial function: let 2r := min{|sk −sl |}1≤k<l≤N ,
then v̂ is defined by

v̂(s) =
{

sign (an) (r − |sn − s|) for s ∈ Br (sn)

0 for s ∈ R
3\⋃

1≤n≤N Br (sn)
. (17)

One readily calculates that

F(v̂) = N
(
|Br | − 4πr |a|

)
, (18)

where

|a| ≡ 1

N

∑

1≤n≤N

|an|. (19)

Thus, limK→∞ FK =: F ≤ infv F(v) ≤ F(v̂) exists, and FK < F for all K ≥ 2.
As a corollary, since FK ′(vK ) < FK (vK )when K > K ′, we have that FK ′(vK ) < F

whenever K > K ′. By coercivity, for any fixed K ′ ≥ 2 there now exists a positive con-
stant C such that ‖vK ‖

Ẇ 1,2K ′
0 (R3)

< C F for all K > K ′. Now, since Ẇ 1,2K ′
0 (R3) is a sep-

arable, reflexive Banach space for all 1 ≤ K ′ < ∞, the closed ball
{
v : ‖v‖

Ẇ 1,2K ′
0 (R3)

<

C F
}

is weakly compact. Therefore the sequence {vK }∞K=2 contains a weakly convergent

subsequence in (Ẇ 1,2
0 ∩ Ẇ 1,2K ′

0 )(R3) for each K ′ ≥ 1. By a diagonal argument we can

pick the subsequence so that its weak limit in each (Ẇ 1,2
0 ∩ Ẇ 1,2K ′

0 )(R3) is one and the

same v∞ ∈ ⋂
1≤k≤K ′ Ẇ 1,2k

0 (R3) for all 1 ≤ K ′ < ∞, hence v∞ ∈ ⋂
1≤k<∞ Ẇ 1,2k

0 (R3).

Now, functions in
⋂

1≤k<∞ Ẇ 1,2k
0 (R3) are not necessarily in Ẇ 1,∞

0 , but the uniform
(in K ) upper bound F on the FK (vK ) guarantees that the weak limit v∞ of the vK is
actually in Ẇ 1,∞

0 ; indeed, we even have |∇v∞| ≤ 1 a.e. For assume to the contrary that
|∇v∞| �≤ 1 a.e. Then there exists an� ⊂ R

3 with |�| > 0 such that |∇v∞| ≥ 1+2ε a.e.
in�. But then there exists a K̃ such that |∇vK | ≥ 1 + ε a.e. in�whenever K > K̃ . And
then we have FK (vK ) ≥ |�| ∑K

k=K̃ +1
(2k−3)!!
(2k)!! (1 + ε)2k ↗ ∞ as K → ∞, which is a

contradiction to FK (vK ) < F for all K . Thus, not only is v∞ ∈ Ẇ 1,∞
0 , also |∇v∞| ≤ 1

a.e. in R
3, as claimed. So v∞ ∈ ⋂

1≤k≤∞ Ẇ 1,2k
0 (R3) ∩ {v : |∇v| ≤ 1} = A .
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2.5. The limit of the minimizers of the FK minimizes F . We have just proved that
v∞ ∈ A . We now show that F(v∞) = minv∈A F(v).

Since A ⊂ (W 1,2 ∩ W 1,2K )(R3) for each K ≥ 1, FK (v) is well-defined for each
v ∈ A and each K ∈ N; in particular, FK (v∞) is well-defined for each K ∈ N.
Moreover, limK→∞ FK (v) = F(v) for each v ∈ A , by monotone convergence.

Now, by the monotonicity of the sequence of Taylor polynomials
{

fK (|∇v|)
}∞

K=1,
we have F(v∞) > FK (v∞) ≥ FK (vK ) = FK for all K > 1. By taking the limit as
K → ∞, we obtain F(v∞) ≥ limK→∞ FK (vK ) = F .

On the other hand, recalling (14), we see that eachFK is obviously weakly lower semi-
continuous, so we have FK ′(v∞) ≤ limK→∞ FK ′(vK ). Recalling now that FK ′(vK ) <

F whenever K > K ′, we obtain FK ′(v∞) ≤ F for all K ′ > 1. Taking the limit
K ′ → ∞ and recalling that limK ′→∞ FK ′(v) = F(v) for each v ∈ A , we obtain that
F(v∞) ≤ F . In total, we have shown that F(v∞) = F .

It remains to show that there is no ṽ ∈ A for which F(ṽ) < F . But this is really
easy. For assume to the contrary that there were such a ṽ with F(ṽ) = F − ε. Then
FK (ṽ) < F − ε for all K > 1, which contradicts the fact that for any ε we can find a
K̃ (ε) such that minv∈(W 1,2∩W 1,2K )(R3) FK (v) = FK (vK ) > F −ε whenever K > K̃ (ε).

This proves that F takes its minimum at v∞ ∈ A , and the minimum equals F .
Moreover, by convexity, the minimizer is unique.

2.6. The minimizer of F weakly satisfies the Euler-Lagrange equation. We cannot yet
conclude that the minimizer v∞ of F(v) weakly satisfies the formal Euler-Lagrange
equation (1) because for this conclusion we need to know that |∇v∞| < 1 a.e. and so
far we only know that |∇v∞| ≤ 1 a.e. We now show that |∇v∞| < 1 a.e., which implies
that v∞ weakly satisfies (1), i.e. (7).

Let�crit = ⋂
ε>0 {s : |∇v∞| > 1 − ε}. Note that�crit contains all points s∗ at which

|∇v∞(s∗)| = 1 as well as all points s∗ for which ess-lims→s∗ |∇v∞(s)| = 1 without
necessarily having ∇v∞(s) itself defined at s = s∗. Clearly, �crit has finite Lebesgue
measure, |�crit| < ∞, for v∞ ∈ A implies that |∇v∞(s)| → 0 as |s| → ∞. We now
show that |�crit| = 0.

For this purpose we assume to the contrary that |�crit| > 0. Then the variation of
F(v) about v∞ gives to the leading order (i.e. power 1/2) in ψ ,

F (1/2)[v∞](ψ) := −
∫

�crit

√−2∇v∞(s) · ∇ψ(s) d3s, (20)

where ψ ∈ C∞
0 (R

3) is any test function satisfying ∇v∞(s) · ∇ψ(s) ≤ 0 a.e. on �crit .
Note that F (1/2)[v∞](ψ) is homogeneous of fractional degree 1/2 in ψ ; hence, this
nonlinear term — if nonzero — will in general dominate the usual linear terms in ψ ,
indeed. Moreover, whenever F (1/2)[v∞](ψ) �= 0, we manifestly have

−
∫

�crit

√−∇v∞(s) · ∇ψ(s) d3s < 0. (21)

But for v∞ to minimize F over A we must have F (1/2)[v∞](ψ) ≥ 0 for all ψ ∈
C∞

0 (R
3) satisfying ∇v∞(s) · ∇ψ(s) ≤ 0 on �crit a.e. This together with (21) implies

that F (1/2)[v∞](ψ) ≡ 0 for all ψ ∈ C∞
0 (R

3) satisfying ∇v∞(s) · ∇ψ(s) ≤ 0 a.e. on
�crit . But this is only possible if |�crit| = 0, as claimed.

Remark 2.2. Our argument above does not show that �crit = {sn}N
n=1.
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The result |�crit| = 0 means that |∇v∞| < 1 a.e., and this already implies that the
variation of F(v) about v∞ to leading order (i.e. power 1) in ψ now reads

F (1)[v∞](ψ) =
∫

R3

(
∇ψ(s) · ∇v∞(s)√

1 − |∇v∞(s)|2
− 4πψ(s)

∑

1≤n≤N

anδsn (s)
)

d3s.

(22)

Since F (1)[v∞](ψ) is linear inψ , v∞ can minimize F over A only if F (1)[v∞](ψ) = 0
for all ψ , which is precisely (7). Thus the Euler-Lagrange equation (1) is satisfied by
v∞ in the weak sense, as claimed. The proof of Proposition 2.1 is complete.

Remark 2.3. We close this section with the remark that alternate, nonvariational routes
to Proposition 2.1 are conceivable. In particular, the Dirac sources can be mollified with
compactly supported C∞ functions, and the asymptotic vanishing of u(s) as |s| → ∞
replaced by 0-Dirichlet conditions on ∂BR , where R is a large ball containing the sup-
ports of all mollifiers of the Dirac sources. For this situation the theorems in [BaSi1982]
guarantee a classical solution to the so mollified (1). As pointed out by one of the
referees, Lemma 2.1 in [BaSi1982] and elliptic regularity theory should now yield uni-
form Lipschitz bounds on the solution u away from the eventual locations of the Dirac
sources when the mollifiers are removed, and the proof of their Lemma 3.1 shows that
the limit function solves (7) restricted to BR . Subsequently one can let R → ∞ by
invoking Treiberg’s barrier function arguments.

3. Bootstrapping Regularity

In this section we bootstrap the regularity of the minimizer v∞ ≡ u of F(v) to the level
which guarantees satisfaction of Theorem 1.1.

3.1. Bootstrapping the regularity of u away from �crit. By our Proposition 2.1, the
unique distributional solution to (1), (2) obtained by minimizing F in A takes val-
ues un = u(sn) at the sn which satisfy the inequalities |un − um | ≤ |sn − sm | for all
1 ≤ n < m ≤ N . Hence we can invoke Corollary 4.2 to Theorem 4.1 of [BaSi1982] to
extract the following proposition for our setting.

Proposition 3.1. Let u(s) ∈ C0,1(R3) be the unique distributional solution to (1), (2)
which minimizes F in A . Then u ∈ Cω(R3\�crit). Moreover, �crit (the singular set K
for u in [BaSi1982]) is a subgraph of KN ≡ K

({sn}N
n=1

) ⊂ R
3, the complete graph

whose vertices are the set {sn}N
n=1. Furthermore, let En,m ⊂ KN denote the edge of KN

with endpoints sn and sm. Then En,m ⊂ �crit if and only if |un − um | = |sn − sm |, and
in that case we have u(tsn + (1 − t)sm) = tun + (1 − t)um for t ∈ [0, 1].

3.2. Proof that �crit = {sn}N
n=1. We recall that any distributional solution ∈ W 1,2

of (1) satisfies the weak maximum principle, Theorem 8.1 in [GiTr1983]. Therefore
v∞(s) ≡ u(s) has a local maximum at sn whenever an > 0 and a local minimum when
an < 0, and no extremum in R

3\{sn}N
n=1. This together with Proposition 3.1 right away

gives us:

Corollary 3.2. Let anam > 0. Then Enm\{sn, sm} �⊂ �crit.
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Thus, the only potentially critical edges En,m are those whose end points sn and sm
sport amplitudes an and am of different sign. To show that also those edges, save their
endpoints, are not critical requires a different argument. We shall invoke a convex duality
argument which rules out all the edges, save their endpoints, from the critical set.

Proposition 3.3. For all 1 ≤ n < m ≤ N we have that Enm\{sn, sm} �⊂ �crit.

Proof. Since C∞
0 (R

3) is dense in C0,1
0 (R3), we can substitute v∞ = u for ψ in (7) and,

for the solution u of (7), obtain the identity

0 =
∫

R3

( |∇u(s)|2
√

1 − |∇u(s)|2 − 4πu(s)
∑

1≤n≤N

anδsn (s)
)

d3s. (23)

A simple rewriting of (23) yields

F(u) =
∫

R3

(
1 − 1

√
1 − |∇u(s)|2

)
d3s. (24)

Defining

U (s) = −∇u(s)
√

1 − |∇u(s)|2 , (25)

where u is still the solution of (7), another elementary rewriting of (24) yields that
F(u) = −G(U ), where

G(V ) =
∫

R3

[√
1 + |V |2 − 1

]
d3s (26)

is well-defined for any vector field V for which |V | ∈ L1
loc(R

3)∩L2(R3\BR), where BR
is some ball of large radius R. Note that G(V ) is related to F(v) by a Legendre–Fenchel
transform, viz.

G(V ) = max
v∈C0,1

0

∫

R3

([√
1 − |∇v|2 − 1

]
− V · ∇v

)
d3s; (27)

the dual variables of the transformation are ∇v ↔ V . Thus, G(V ) is strictly convex in
V . But we have seen that also F(v) is strictly convex for v ∈ A , so F(v) — or rather
the source-free part of F(v) — is given as a Legendre–Fenchel transform of G(V ). As
a result, we can also obtain the minimum of F(v) and its minimizer v∞ = u in terms
of a constrained minimum principle for G(U ). Explicitly,

G(U ) = min
{
G(V )

∣
∣
∣∇ · V = 4π

N∑

n=1

anδsn ; |V | ∈ L1
loc(R

3) ∩ L2(R3\BR)
}
; (28)

in (28) it is understood that ∇ · V is well-defined in the sense of distributions and that R
is big enough so that {sn}N

n=1 ⊂ BR .
Next, we define the almost everywhere harmonic field

Vh(s) = −
N∑

n=1

an∇ 1

|s − sn| . (29)
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Note that Vh(s) ∈ L1
loc(R

3) ∩ L2(R3\BR) whenever {sn}N
n=1 ⊂ BR . Furthermore,

∇ · Vh = 4π
N∑

n=1

anδsn . (30)

So Vh is in the set of admissible vector fields for our variational principle (28).
We are now ready for our main argument. Namely, suppose that for some n,m the

edge En,m ⊂ �crit . Without loss of generality we may assume that no other sk lies
on En,m . Then lims→En,m |∇u(s)| = 1, and so lims→En,m |U (s)| = ∞. But since u is
analytic away from �crit , so is U , hence we conclude that there is some tubular neigh-
borhood of En,m in which |U (s)| > |Vh(s)|. Since sn �= sm we can intersect our tubular
neighborhood of En,m with two small balls centered at sn and sm , respectively, and delete
the intersection domain from it. Denote the resulting truncated tubular neighborhood by
E◦

n,m ; it is a bounded open set. Mollify its boundary ∂E◦
n,m a little bit to obtain an open

corridor C◦
n,m ; it needs to have a finite distance from any sk . Now let V∗(s) be given

by U (s) for s �∈ E◦
n,m ∪ C◦

n,m , and by V∗(s) = Vh(s) for s ∈ E◦
n,m\C◦

n,m . We need to
connect these fields smoothly across C◦

n,m , but this is easy. Since away from {sn}N
n=1

the fields U and Vh are divergence-free, we can represent each field as the curl of some
vector field. We can choose a C∞ deformation of one such vector field into the other
across the transition region C◦

n,m , and in C◦
n,m we define V∗ to be the curl of this deformed

field. Thus V∗ is in the set of admissible vector fields for our variational principle. But
then we have G(V∗) < G(U ), which is a contradition to our variational principle (28).

Thus |U (s)| < ∞ for s ∈ R\{sn}N
n=1, and therefore �crit = {sn}N

n=1. ��
Remark 3.4. We close this section with the remark that our convex duality argument
can also be adapted to show that |∇v∞(s)| < 1 away from {sn}N

n=1 without invoking
Proposition 3.1. But then a Nash-Moser argument has to be supplied to bootstrap the
regularity of v∞ from Lipschitz continuity to real analyticity in R

3\{sn}N
n=1.

4. Applications to Geometry and Physics

4.1. Spacetime interpretation of Theorem 1.1. A smooth space-like hypersurface 
 in
Minkowski spacetime M

4 ∼= R × R
3 is a three-dimensional simply connected subset of

M
4 with a time-like normal vector at every point in
. Thus
 = {� ∈ M

4 : T (�) = 0}
is the boundary of the zero level set of a differentiable function T : M

4 → R with
ran(T ) = R and dT (�) time-like, i.e. g−1(dT (�),dT (�)) < 0 for all � ∈ M

4;
here d is E. Cartan’s exterior derivative on M

4 and g the Minkowski metric with signa-
ture +2, a 2-covariant tensor acting on T (M4) × T (M4), where T (M4) is the tangent
bundle of M

4. Topologically, 
 ∼ R
3.

Since any such hypersurface is a graph over R
3, without loss of generality we may

assume that the generating function T is of the form T (�) = t − c−1S(s), where
� ∼= (ct, s) defines a Lorentz frame, where t is time and s is a vector in Euclidean space
R

3. Then
 = {(ct, s) : t = c−1S(s)}. Since g−1(dT (�),dT (�)) = −1 + |∇S|2, and
since 
 is space-like, we need to have 1 − |∇S|2 > 0 everywhere.

For those
 which are asymptotically flat, more precisely if
 � 
0 with
0 ∼= R
3,

the volume difference �vol(
|
0) of 
 versus 
0 is well-defined. After at most a
Lorentz transformation we can choose 
0 = {(ct, s) : t = 0} ∼= R

3, in which case

�vol(
|
0) =
∫

R3

(√
1 − |∇S|2 − 1

)
d3s. (31)
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Note that �vol(
|
0) ≤ 0. A hypersurface
 is called maximal if any compact vari-
ation leads to a decrease of volume. In particular,
0 ∼= R

3 is a maximal entire spacelike
hypersurface in M

4. By a Bernstein theorem of Cheng and Yau [ChYa1976], any entire
space-like maximal hypersurface in M

4 is flat; see also [Yan2000]. Thus, to be inter-
esting a maximal hypersurface cannot be entirely space-like but at best only space-like
almost everywhere. If in particular
 has isolated defects then by Ecker’s theorem these
are lightcone singularities, i.e. isolated points in 
 where the normal vector touches
the lightcone. Any such almost-everywhere space-like maximal hypersurface with point
defects in M

4 is the graph 
 = {(ct, s) : t = c−1S(s)} of a function S(s) satisfying
1 − |∇S|2 > 0 away from the defects, such that 1 − |∇S|2 extends continuously into
the defects, where it vanishes.

Prescribing the locations sk ∈ R
3 of the lightcone singularities does not uniquely

determine an asymptotically flat maximal hypersurface with defects. In addition, the
particular asymptotically linear behavior of S(s), and also the integral mean curvatures
μk ∈ R\{0} which are associated with each lightcone singularity of the hypersurface
have to be prescribed. Maximizing �vol(
|
0) for such a hypersurface with light-
cone singularities of prescribed integral mean curvatures is a variational problem with
constraints. The Euler-Lagrange equation for this problem reads5

− ∇ · ∇ S
√

1 − |∇S|2 = 3
N∑

k=1

μkδsk . (32)

Identifying S = u and μk = (4π/3)ak yields (1).
In this spacetime interpretation our Theorem 1.1 becomes:

Corollary 4.1. For any set {sk}N
k=1 ⊂ R

3 of distinct points and any set of integral mean
curvatures {μk}N

k=1 ⊂ R\{0} assigned to these points, there exists a unique asymp-

totically flat hypersurface 
 = {(ct, s) : t = c−1S(s)} with S ∈ C0,1
0 (R3,R) ∩

Cω(R3\{sk}N
k=1,R) solving (32); moreover, |∇S(s)| → 1 as s → sk . Thus 
 is an

almost everywhere space-like maximal hypersurface, having N lightcone singularities
with prescribed integral mean curvatures μk located at the sk .

4.2. Electrostatic interpretation of Theorem 1.1. In classical electromagnetic field the-
ory, the Coulomb law states that an electric (point-)charge “density” in R

3 is the source
of the electric displacement field D,

∇ · D = 4π
N∑

k=1

zkδsk Coulomb’s law , (33)

with6 zk ∈ Z\{0}, while Faraday’s law says that an electrostatic field E is curl-free,

∇ × E = 0 Faraday’s law (stationary). (34)

5 We follow the convention of [GiTr1983] which differs from that in [BaSi1982] by the factor 3.
6 Empirically, all nuclear and electron charges are integer multiples of the elementary charge, which is

unity in our units.
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These two laws need to be complemented by a law to relate E and D, for which Max
Born [Bor1933] proposed

D = E
√

1 − β4|E|2 Born’s law (35)

with β ∈ (0,∞) (we use the dimensionless notation of [Kie2004a]). In the limit β →
0 Born’s law (35) goes over into Maxwell’s law of the “pure aether”, D = E. We
remark that (35) is the electrostatic limit of both, the electromagnetic law proposed
by Born [Bor1933,Bor1969] and the more elaborate law proposed by Born and Infeld
[BoIn1933,BoIn1934]. The latter has received much attention in recent years, see the
references in [Gib1998,Kie2004a,Kie2004b,Kie2012].

Clearly, (34) implies that E = −∇ A for some scalar potential field A. Inserting this
representation for E into (35), which in turn is inserted in (33), we obtain

− ∇ · ∇ A
√

1 − β4|∇ A|2 = 4π
N∑

k=1

zkδsk . (36)

Multiplying (36) by β2 and identifying β2 A = u and β2zk = ak we retrieve (1).
In this electrostatic interpretation our Theorem 1.1 yields:

Corollary 4.2. For any finite number N of point charges {zk}N
k=1 ⊂ Z\{0} located at

distinct points {sk}N
k=1 ⊂ R

3, there exists a unique electrostatic field E in R
3\{sk}N

k=1
which solves (33), (34), (35) and has finite field energy7

Efield (D) = 1

4π

α

β4

∫

R3

(√
1 + β4|D|2 − 1

)
d3s. (37)

The solution E ∈ Cω(R3\{sk}N
k=1,R

3), but it cannot be continuously extended into the
sk . It is bounded, with β2|E(s)| → 1 for s → sn, and it vanishes for |s| → ∞.

Remark 4.3. Presumably inspired by Theorem 4.1 and Corollary 4.2 in [BaSi1982], at
the beginning of Sect. 4 in [Gib1998]8 Gibbons contemplates the following: “It is well
known that one can construct explicit multi-black hole solutions held apart by struts,
the struts being the sites of conical singularities representing distributional stresses.
One should be able to construct analogous multi-BIon solutions.” (What Gibbons calls
“multi-BIon” solutions are but electrostatic solutions to the Maxwell–Born–Infeld equa-
tions with many point charge sources. In particular, Born’s solution, for Gibbons, is “the
BIon.”) Our Theorem 1.1 and its Corollary 4.2 show that struts between the point charges
do not occur in the electrostatic solutions to the Maxwell–Born–Infeld field equations
with point charge sources.

7 Here, α is Sommerfeld’s fine structure constant, inherited from the units in [Kie2004a].
8 In the same paragraph in [Gib1998] the results of Bartnik and Simon [BaSi1982] (Gibbons’ reference

[Bar1987]) for the weak solvability of the Dirichlet problem are somewhat misquoted: the necessary condition
(in our notation) |un −um | ≤ |sn −sm | on the Dirichlet data at the distinct points sn and sm , which in Gibbons’
notation would have to read |�a −�b| ≤ |xa − xb|, is missing. Whenever |�a −�b| = |xa − xb|, then a
strut between xa and xb does occur.
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5. Extensions of our Results

The geometric interpretation of u as a time function of a maximal almost-everywhere
space-like hypersurface with lightcone singularities in Minkowski spacetime allows one
to exploit the Poincaré group of M

4 to generate solutions u to (1) with different linear
asymptotics at space-like infinity than (2). Since there is a unique Poincaré transforma-
tion for the transition from asymptotically vanishing to non-zero asymptotically linear
conditions, we can therefore conclude:

Corollary 5.1. For any finite sets {sn}N
n=1 ⊂ R

3 and {an}N
n=1 ⊂ R\{0} and a vector

e ∈ R
3 of magnitude |e| < 1 there exists a unique real function u ∈ C0,1(R3) satisfying

u(s)− e · s → 0 as |s| → ∞, (38)

and solving (1) in the sense of distributions. Furthermore, |∇u(s)| < 1 for s ∈
R

3\{sn}N
n=1, and lims→sn |∇u(s)| = 1 for each sn. Thus, u ∈ Cω(R3\{sn}N

n=1).

The equivalence between the mathematical theories of maximal space-like hypersur-
faces with point defects in Minkowski spacetime on the one hand and the electrostatic
Maxwell–Born-Infeld potentials generated by point charge sources on the other allows
us furthermore to re-interpret these asymptotically nontrivially linear hypersurfaces as
electrostatic solutions with asymptotically (at spacelike infinity) constant electric fields.
It is worth stressing that, in the notation of our previous subsection, one thus interprets
(β2 A, s), rather than the spacetime point (ct, s), as the Minkowski four-vector to gener-
ate new solutions by Poincaré transformations. This “hidden Poincaré symmetry” seems
to have been exploited first by Gibbons, see Sects. 3.3 and 3.7 of [Gib1998]; in partic-
ular, in Sect. 3.7 Gibbons transforms Born’s solution into an electrostatic solution with
a single point charge and an asymptotically constant electric field whose magnitude is
below Born’s critical field strength.

Lastly, as already announced in the Introduction, there is an analogue of our Theo-
rem 1.1 for the Dirichlet problem in bounded domains with nice boundary. This is not
directly a corollary of our proof, yet its proof follows by a straightforward adaptation of
our proof to the Dirichlet problem. Thus we claim:

Theorem 5.2. Let � ⊂ R
3 be a bounded Lipschitz domain containing the finite point

set {sn}N
n=1 ⊂ R

3. Then for any φ : ∂� → R satisfying |φ(s) − φ(s′)| < |s − s′| for
s �= s′, and any set {an}N

n=1 ⊂ R\{0}, there exists a unique real u ∈ C0,1(�) solving

∇ · ∇ u(s)
√

1 − |∇u(s)|2 + 4π
N∑

n=1

anδsn (s) = 0 for s ∈ �, (39)

u(s) = φ(s) for s ∈ ∂� (40)

in the sense of distributions. Furthermore, |∇u(s)| < 1 for s ∈ �\{sn}N
n=1, and

lims→sn |∇u(s)| = 1 for each sn. Thus, u ∈ Cω(�\{sn}N
n=1).

Remark 5.3. Bernd Kawohl kindly explained to me that for such a bounded domain the
detour via the FK (v) should be unnecessary to minimize the convex functional F(v)
over the convex set {v ∈ W 1,∞

0 (�) : |∇v| ≤ 1 a.e. in �}.
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6. Desiderata

For matters of a quantitative nature it is important to have efficient algorithms to actually
compute the solutions which in this paper we have proved do exist. For Hölder-contin-
uous regularizations of the point charge sources such an algorithm has been developed
in [CaKi2010,Kie2011], but so far none seems available which would cover the point
charge and other singular sources in R

3. The situation is better for the lower-dimen-
sional problem in R

2, see [Pry1935a,Kob1988,Fer2010], and it is desirable also for the
solutions in R

3 to have explicit formulas in terms of, say, quadratures and such. For the
time being, the variational arguments allow one to work with numerical discretizations
and to run minimization routines.

Another question is whether our Minkowski space results extend to certain curved
Lorentz manifolds, in particular to asymptotically flat Lorentz manifolds [Bar1984]. If
the Lorentz manifold is given (a so-called background spacetime), then the essence of
the results of [BaSi1982] remains true under appropriate conditions, as shown by Bart-
nik in [Bar1988] with quite different arguments than those in [BaSi1982]. Moreover, in
[Bar1989] Bartnik also extended Ecker’s singularity theorem to certain Lorentz mani-
folds. For those Lorentz manifolds for which the analogue of the flat spacetime theorems
of Bartnik–Simon hold we expect that analogues of our theorems will hold as well. We
remark that Bartnik’s theorems in [Bar1988,Bar1989] do not require the manifold to be
asymptotically flat.

Another question, of prime importance as explained in [Kie2012], is whether the
extension of our electrostatic results to a general-relativistic setting is possible in which
an asymptotically flat Lorentz manifold is to be found by solving Einstein’s field equa-
tions, with an electrostatic energy(-density)-momentum(-density)-stress tensor as curva-
ture source for the metric, along with solving the Maxwell–Born–Infeld equations for the
electrostatic field in the curved spacetime. The problem with a single point charge source
was treated already by Hoffmann [Hof1933ff] but only recently with complete rigor, by
Tahvildar-Zadeh [TaZa2011]; there the reader is also directed to the large amount of
literature on the subject. The general sentiment, as expressed in the quote from Gibbons
at the end of Sect. 4, seems to be that in the multi-point-charge problem struts will occur
between the point charges; see also [Wei1996]. We hope to offer a definitive answer in
the foreseeable future.
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