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A key qualitative requirement for highway traffic models is the ability to replicate a type
of traffic jam popularly referred to as a phantom jam, shock wave or stop-and-go wave.
Despite over 50 years of modelling, the precise mechanisms for the generation and
propagation of stop-and-go waves and the associated spatio-temporal patterns are in
dispute. However, the increasing availability of empirical datasets, such as those
collected from motorway incident detection and automatic signalling system (MIDAS)
inductance loops in the UK or the next-generation simulation trajectory data (NGSIM)
project in the USA, means that we can expect to resolve these questions definitively in
the next few years. This paper will survey the essence of the competing explanations of
highway traffic pattern formation and introduce and analyse a new mechanism, based on
dynamical systems theory and bistability, which can help resolve the conflict.
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1. Introduction

Recent reports estimate that delays due to road traffic congestion cost UK
businesses up to £20 billion annually (Confederation of British Industry 2003).
As economies grow, so will road traffic: the UK forecast is 30% growth in the
period 2000–2015 (House of Commons Select Committee on Transport 2005).
Hence there is an intense international effort in Intelligent Transport Systems
(ITS) in which information and communication technologies are used to manage
traffic in order to alleviate congestion.

On the English motorways and trunk roads, known collectively as the strategic
road network, the Highways Agency has employed schemes such as Controlled
Motorways (automatically reduced mandatory speed limits, such as on London’s
M25 orbital motorway), ramp metering (traffic lights on on-ramps, which release
just a few vehicles at a time) and most recently Active Traffic Management (hard
shoulder running on Birmingham’s M42 motorway); see http://www.highways.
gov.uk. These schemes activate automatically in peak times in an attempt to
stabilize flow and hence reduce congestion and accidents. The investment in
telematics infrastructure has been significant—approximately £100 million for
Active Traffic Management alone.
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Figure 1. A typical sample of spatio-temporal speed data captured from the inductance loop system
on London’s orbital motorway, with some estimated average vehicle trajectories superimposed.
This paper is concerned with the mechanisms for the formation of stop-and-go congestion waves,
which are a common feature of highways around the world.

R. E. Wilson2018
The context of this paper is the fundamental traffic models and control
algorithms that will in future form the kernel of ITS. Traffic flow models operate
at a range of different scales, from (i) whole-link models, which output travel
time without modelling within-link traffic structure, through (ii) macroscopic
models, which are generally formulated as partial differential equations (PDEs)
and which regard traffic as a fluid-like continuum, to (iii) car-following models
which consider individual vehicle dynamics. Here we discuss classes (ii) and (iii).
Note that it is generally accepted that there will never be a single definitive
model for highway traffic flow and moreover, despite the very wide range of
traffic models available, there has until recently been insufficient data for a
detailed evaluation and verification or optimization of competing models.
Consequently, the academic modelling literature has grown and branched but
has usually failed to connect to the real applications. However, there is now
substantial mileage in using data routinely captured from ITS hardware to refine
the fundamental traffic models themselves.

Figure 1 displays a small subset of spatio-temporal data captured from the
Highways Agency’s motorway incident detection and automatic signalling system
(MIDAS) hardware, whose detection system consists of sets of inductance loops
buried in the road surface and spaced typically at 500 m intervals around the
motorway network. These loops, which are typical of highways in many Western
countries, are equipped with signal processing electronics that measure the time
and lane number of passing vehicles and estimate their speeds and lengths. In
normal operation, a roadside outstation bundles these data into 1 min averages
which are then sent to a control centre.
Phil. Trans. R. Soc. A (2008)



2019Pattern mechanisms for highway traffic
In everyday terms, the pattern shown in figure 1 is commonly referred to as
a phantom jam or a shock wave although in the scientific literature the terms stop-
and-go wave or wide moving jam are preferred, since the structure, which
propagates upstream against the flow of traffic, consists of two sharp interfaces
(one at which vehicles brake and the other at which vehicles accelerate) bounding
a plateau of slow-moving traffic. In fact, this pattern is just one member of
more complicated classifications developed by Kerner & Rehborn (1997) and
Treiber et al. (2000).

The first (and now famous) mathematical explanation of traffic jams and their
propagation was attempted with the hydrodynamic LWRmodel due to Lighthill &
Whitham (1955) and Richards (1956), which describes traffic via continuous
density rðx; tÞ and velocity vðx; tÞ variables that satisfy the continuity equation

rt CðrvÞx Z 0; ð1:1Þ

supplemented by the speed–density relation

v ZV̂ ðrÞ; ð1:2Þ

where V̂ is a prescribed decreasing function that models the fact that sparse
traffic tends to drive quickly, whereas dense traffic drives more slowly for safety
reasons. From here one obtains the fundamental diagram

QdrV ðrÞ ð1:3Þ

for traffic flux. The choice V̂Zvmaxð1Kr=rmaxÞ (known as Greenshield’s model)
is typical in that it yields a quadratic unimodal Q, and consequently the result
that a highway’s maximum traffic flow is attained at intermediate densities
and speeds.

Moreover, the theory of characteristics may be used to analyse the wave types
of (1.1) and (1.2), and the analysis depends qualitatively on the shape of Q. In
particular, for strictly convex Q (such as for Greenshield’s model), the LWR
model captures the upstream (decelerating traffic) interface of a stop-and-go wave
as a classical shock; however, at the downstream (accelerating traffic) interface, a
rarefaction fan is predicted (whereas the inductance loop data indicate that the
downstream interface remains sharp). In §4 we will return to this point.

The focus of this paper, however, is on car-following models that consider
vehicles to be discrete entities moving in continuous time and space (see
Helbing 2001 for a review). Such models involve ordinary or delay differential
equations that describe each driver’s acceleration response to the vehicle(s)
immediately ahead. As shown in figure 2, it is typical for such models to possess
an instability in some parameter regimes, which leads to the folding up of traffic
into structures that resemble stop-and-go waves—an idea which dates back to
Herman et al. (1959) who analysed linear follow-the-leader models in which a
driver’s acceleration is proportional to the relative velocity of the vehicle
ahead. However, the nonlinear rejuvenation of this area is much more recent—
beginning with the optimal velocity model proposed by Bando et al. (1995).
Despite an intensive international effort in this area over the last 10 years, there
are, in my view, significant gaps in our mathematical understanding, which now
need to be addressed.
Phil. Trans. R. Soc. A (2008)
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Figure 2. Trajectory plots for a typical car-following model solved on a ring road. A small
perturbation is added to uniform flow (parallel trajectory) initial data, which magnifies to produce
large-scale wave features. Here we simulate 100 vehicles with the optimal velocity model (2.7) and
unstable parameters h�Z2, aZ1:5.

R. E. Wilson2020
The paper is laid out as follows. First in §§2 and 3, we present a formulation of
the standard linear instability analysis of car-following models, which is new in
that it is couched in almost entirely general terms. In particular, under very mild
constraints on the car-following model under consideration, we are able to show
that if linear instability occurs, then its onset has the same mechanism, namely
via a dispersion relation whose real part is quadratic in small wavenumber and
whose curvature changes sign as the bifurcation condition is crossed.

Since the onset of instability in car-following models occurs at long wavelengths,
it is my view that it should be captured by macroscopic PDE models, and in §4 we
discuss the limitations of existing PDE theories in this regard. It should be said
that there is a substantial community who believe that the stability issues are not
central to pattern formation and we outline their arguments.

Next in §5, we give an account of recent developments in the nonlinear
stability analysis of car-following models. In particular, we describe how it is
possible to construct models in which smooth (so-called uniform) flows are
linearly stable for all parameters, and yet for which there are patterns like those
in figure 2. In my opinion, such a mechanism may go a long way to help resolve
the conflict in views between the different traffic modelling communities. Finally,
in §6 we present conclusions.

2. Car-following model framework

Our starting point is the standard situation depicted in figure 3. We consider a
single lane of traffic labelled 1, 2, etc., in the upstream direction. Displacements
and velocities are denoted xnðtÞ and vnðtÞR0, respectively, and our models shall
Phil. Trans. R. Soc. A (2008)
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Figure 3. General scheme and notation for car-following models.

2021Pattern mechanisms for highway traffic
also involve the front-to-front spacing hnðtÞdxnK1ðtÞK xnðtÞO0 of consecutive
vehicles, commonly referred to as the headway. Note that overtaking
is neglected in our framework in return for analytical tractability. In fact,
next-generation simulation project (NGSIM) data indicate that lane changing
at congested merges is key in triggering stop-and-go waves. Therefore, our
approach is to view lane changing as an external perturbation to a single-lane
model whose stability should then be analysed.

In their simplest form, car-following models consist of a set of coupled
differential equations for the trajectory of each vehicle, which typically
supplements the kinematic relations _xnZvn with a behavioural model

_vn Z f ðhn; _hn; vnÞ; ð2:1Þ

which describes how drivers accelerate/decelerate in response to the motion of
the vehicle in front, and their own velocity.

Here, motivated by data, we focus on models where there is a monotone
increasing optimal velocity function V such that

f ðh�; 0;V ðh�ÞÞZ 0 for all h�O0 ð2:2Þ

and consequently a one-parameter family of steady driving solutions known as
uniform flows. In this case, the connection with the LWR model (1.1), (1.2) is the
obvious one given by V ðh�ÞhV̂ ðrÞ where rZ1=h�.

We now consider small perturbations to the equilibria by setting hnZh�C ~hnðtÞ
and vnZV ðh�ÞC ~vnðtÞ, where ~hn and ~vn are small. Assuming f is sufficiently
smooth, this linearization yields

_~vn Z ðDhf Þ~hn CðD _h f Þ
_~hn CðDvf Þ~vn; ð2:3Þ

where the partial derivatives Df are evaluated at the constant equilibrium
arguments ðh�; 0;V ðh�ÞÞ, and necessary constraints for rational driver behaviour are

Dh f ;D _h fR0 and Dv f%0: ð2:4Þ

Note that equation (2.3) may be re-expressed in the form

_vn Z ðDh f ÞðhnK h�ÞCðD _h f Þ _hn CðDvf ÞðvnKV ðh�ÞÞ: ð2:5Þ

A broad class of car-followingmodels may then be obtained by a dynamic relaxation
where h� and V ðh�Þ are replaced by the time-varying quantities HðvnÞ and V ðhnÞ,
Phil. Trans. R. Soc. A (2008)



R. E. Wilson2022
respectively. Here HdVK1 is the optimal headway function and we obtain

_vn ZaðV ðhnÞK vnÞCb _hn CgðhnKHðvnÞÞ; ð2:6Þ
with a; b;gR0, consisting of a blend of optimal velocity, relative velocity and
optimal headway terms. This class is a strict subset of the general model (2.1), but
has the advantage that the equilibrium and near-equilibrium structures are clearly
exhibited. Moreover, well-known models in the literature are captured as special
cases: for example, aO0, bZgZ0 give the classic optimal velocity model (Bando
et al. 1995)

_vn ZaðV ðhnÞK vnÞ;
V ðhÞZ tanhðhK2ÞCtanh 2;

)
ð2:7Þ

with which we illustrate this paper. Here we have adopted Bando’s original
non-dimensional choice for V ðhÞ which has (what is believed to be) the correct
sigmoidal shape.

In addition to model (2.1), we wish to consider mildly non-local stimuli to
driver behaviour, where the spacings of several vehicles in front are also
considered. This multi-anticipative generalization takes the form

_vn Z f hð1Þ
n ; hð2Þ

n ;.; hðmhÞ
n ; _h

ð1Þ
n ; _h

ð2Þ
n ;.; _h

ðm _hÞ
n ; vn

� �
; ð2:8Þ

where mh and m _h are the numbers of vehicles ahead that are considered in

headway and headway rate terms, respectively, and multiple headways h
ðkÞ
n are

defined by
hðkÞ
n Z hn ChnK1 C/ChnKkC1: ð2:9Þ

In particular h
ð1Þ
n Zhn. As before, we assume the existence of an equilibrium

function V so that
f ðh�; 2h�;.;mhh�; 0; 0;.; 0;V ðh�ÞÞZ 0; ð2:10Þ

for any h�. As a specific example, we may consider

_vn Z
Xma

kZ1

ak V
h
ðkÞ
n

k

 !
K vn

( )
C
Xmb

kZ1

bk
_h
ðkÞ
n C

Xmg

kZ1

gk

h
ðkÞ
n

k
KHðvnÞ

( )
ð2:11Þ

as a direct generalization of equation (2.6) (cf. Lenz et al. 1999; Wilson et al. 2004).
3. Linear stability analysis

Now the goal is to show that the linear stability analysis of uniform flow situations
works out in a very similar way under quite unrestrictive assumptions on the
detail of the model. First, we eliminate the velocity variable and write small
amplitude dynamics in terms of headway variables alone. This is achieved by

noting that _hnZvnK1K vn and consequently €hnZ _vnK1K _vn, so that (2.3) yields

€~hn Z ðDhf Þð~hnK1K~hnÞCðD _hf Þð
_~hnK1K

_~hnÞCðDvf Þ _~hn: ð3:1Þ

The exponential ansatz
~hn ZRe ðcein q eltÞ ð3:2Þ
Phil. Trans. R. Soc. A (2008)



2023Pattern mechanisms for highway traffic
then yields the quadratic

l2CfðD _h f Þð1KeKiqÞKðDv f ÞglCðDh f Þð1KeKiqÞZ 0; ð3:3Þ

to solve for the (generally complex) growth rate l in terms of the discrete
wavenumber q, 0!q%p.
(a ) Case of short-wavelength perturbations: qZp

Note that qZp gives the shortest possible perturbation wavelength,
corresponding to a fluctuation of period two cars. Equation (3.3) then yields

l2 Cf2ðD _h f ÞKðDv f ÞglC2Dh f Z 0; ð3:4Þ

for which all coefficients are positive. Consequently, there are two real roots with
negative real parts. The conclusion is that models of type (2.1) cannot in general
propagate short-wavelength instabilities, provided the sensible sign conventions
(2.4) are maintained.
(b ) Case of long-wavelength perturbations: qZ0C

We now consider the case of long-wavelength perturbations for which q is
small and positive. Note that lZ0, qZ0 always solve (3.3) because the uniform
flow under consideration is just one member of a continuous family of such
solutions. The strategy is thus to seek small solutions l in terms of a regular
perturbation expansion lZl1qCl2q

2C/ and determine the direction in which
the dispersion relation bends at qZ0. Equating the first two powers of q yields

OðqÞ: KðDvf Þl1 CðDh f ÞiZ 0; ð3:5Þ

Oðq2Þ: l21 CðD _h f Þil1KðDv f Þl2C
1

2
ðDh f ÞZ 0: ð3:6Þ

Therefore l1Z iðDh f Þ=ðDv f Þ is purely imaginary and the growth is neutral at

leading order. The Oðq2Þ relation then yields the real expression

l2 Z
ðDh f Þ
ðDv f Þ3

1

2
ðDv f Þ2KðDh f ÞKðD _h f ÞðDv f Þ

� �
; ð3:7Þ

whose bracket consists of a balance of terms of different signs, allowing the
possibility of changes in stability as either the model or the parameters are
changed. For instability of arbitrarily large wavelength perturbations, we require

1

2
ðDvf Þ2KðDh f ÞKðD _h f ÞðDvf Þ!0: ð3:8Þ

For the optimal velocity model (2.7), this gives the standard instability condition

a!2V 0ðh�Þ; ð3:9Þ

and the stability limit is thus aZ2 since V 0
maxZ1.
Phil. Trans. R. Soc. A (2008)



R. E. Wilson2024
(c ) General condition for instability

Now that we have considered the extreme cases of short and long wavelengths,
we perform a marginal stability analysis for the general wavelength, by seeking
the neutral stability curve. If we set lZ iu (u real) in (3.3) and equate real and
imaginary parts, we obtain

Ku2 CfðD _h f Þ sin qguCðDh f Þð1Kcos qÞZ 0; ð3:10Þ

fðD _h f Þð1Kcos qÞKðDv f ÞguCðDh f Þ sin qZ 0: ð3:11Þ

Here we use the second equation to eliminate u in the first, and then apply
the half-angle formulae sin qZ2SC and 1Kcos qZ2S 2, where SZsinðq=2Þ
and CZcosðq=2Þ. Simplification and division by the non-zero factor 4S 2ðDh f Þ
then yields

1

2
ðDvf Þ2KC2fðDh f ÞCðD _h f ÞðDvf ÞgZK2S 2fðD _h f Þ

2S2Kð1CC2ÞðD _h f ÞðDvf Þg;

ð3:12Þ

whose r.h.s. is negative (recall the sign conventions (2.4)). Since 0!C2%1, we
may compare the l.h.s. with (3.8) and conclude that the general model is linearly
unstable to arbitrarily long-wavelength perturbations at the marginal stability
point of any other mode.
(d ) Linear stability for the multi-anticipative model

Linearization of (2.8) about the uniform flow state gives

_~vn Z
Xmh

kZ1

ðDhðkÞf Þ~h
ðkÞ
n C

Xm _h

kZ1

ðD _h
ðkÞ f Þ _~h

ðkÞ
n CðDvf Þ~vn; ð3:13Þ

and consequently by using (2.9) and thus ~h
ðkÞ
nK1K~h

ðkÞ
n Z ~hnKkK~hn, we obtain

€~hn Z ðDh f Þ†
Xmh

kZ1

zk ~hnKkK~hn

 !
CðD _hf Þ

†
Xm _h

kZ1

wk
_~hnKkK

_~hn

 !
CðDvf Þ _~hn; ð3:14Þ

where ðDhf Þ†d
Pmh

kZ1ðDhðkÞ f Þ and ðD _hf Þ
†d

Pm _h

kZ1ðD _h
ðkÞ f Þ are analogous to the

total derivatives ðDhf Þ and ðD _hf Þ in the simple case without multi-anticipation,

and zkdðDhðkÞf Þ=ðDhf Þ† and wkdðD _h
ðkÞ f Þ=ðD _hf Þ

† are non-negative weights withP
wkZ

P
zkZ1. The exponential ansatz (3.2) thus yields the quadratic equation

(cf. equation (3.3))

l2 C ðD _h f Þ
† 1K

Xm _h

kZ1

wk e
Kik q

 !
KðDvf Þ

( )
lCðDh f Þ† 1K

Xmh

kZ1

zk e
Kik q

 !
Z 0:

ð3:15Þ
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Figure 4. Usual form for the onset of instability in car-following models, illustrated here for the
optimal velocity model (2.7), for which the onset is at aZ2 and h�Z2, see condition (3.9).
(a) Dispersion relation plotting Re l against discrete wavenumber q, which shows the generic onset of
instability at small wavenumber and hence at large wavelength. This plot is for h�Z2 and (i) aZ2.25,
(ii) aZ2.15, (iii) aZ2.05, (iv) aZ1.95 and (v) aZ1.85. (b) Plot of l2 against headway showing the
usual situation where the onset of long-wavelength instability occurs at mid-range values of the
headway and hence velocity. Here (i) aZ2.3, (ii) aZ2.1, (iii) aZ1.9 and (iv) aZ1.7.

2025Pattern mechanisms for highway traffic
The analysis of small q solutions proceeds similarly to before to yield
l1Z i

P
kzkð ÞðDh f Þ†=ðDvf Þ and (cf. equation (3.7))

l2 Z
ðDhf Þ†

ðDvf Þ3
1

2

X
k2zk

� �
ðDvf Þ2K

X
kzk

� �2
ðDhf Þ†

�

K
X

kwk

� � X
kzk

� �
ðD _hf Þ

†ðDvf Þ
o
: ð3:16Þ

So far our numerical investigations indicate that the onset of instability occurs at
infinite wavelength in the same way as models without multi-anticipation, and
hence the stability boundary is given by a sign change in equation (3.16). However,
a proof may not be achieved so simply since equation (3.15) is parametrized by two
independent complex numbers.
4. Discussion

The general situation that we have now established is described by the dispersion
relation plot in figure 4a. In summary, if a model is unstable to a mode of any one
wavelength, then it is also unstable to all longer wavelengths. Moreover, as a
parameter is varied, the onset of instability occurs at infinite wavelength (zero
wavenumber) via a change in sign of the second derivative of the growth rate
Re l. Thus in marginally unstable situations, only the longest wavelengths are
magnified, which may explain how models that are entirely local in terms of their
interactions give rise to structures (i.e. stop-and-go waves) whose wavelength is
many times the vehicle spacing.

Our next step is to identify the mean headway h� as a special parameter and
then analyse the onset of instability for different h� as a separate external
parameter, such as the sensitivity a in the optimal velocity model (2.7), is varied.
Phil. Trans. R. Soc. A (2008)
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R. E. Wilson2026
From our remarks above concerning the dominance of long-wavelength effects, it
is sufficient to detect sign changes in the coefficient l2, which govern the
component of Re l that is quadratic in small wavenumbers (figure 4b). There is
in fact no general result, but for many models the onset of instability occurs at
mid-range values of h�. Such cases lead to the interpretation presented in
figure 5. In particular, since there is a range of densities for which uniform flow is
linearly unstable, in which one would expect periodic oscillations, one should see
periodic variations in flow. In fact, large fluctuations are found in empirical flow
data to the right of the fundamental diagram’s maximum, thus supporting the
theory that we outline here. Finally, we should say that there is an open question
concerning whether uniform flow restabilizes at large densities (small headways),
since inductance loop systems, which are fixed in space and calculate time
averages, do not properly capture the details of very dense (and hence almost
stationary) traffic.

In order to explain the central conflict in the highway traffic modelling
community, we now turn our attention to PDE models. Our discussion begins
with the model of Kerner & Konhäuser (1993), which supplements the continuity
equation (1.1) with an equation for convective acceleration

vt Cvvx ZaðV̂ ðrÞKvÞKb
rx

r
Cm

vx x
r

; ð4:1Þ

whose r.h.s. terms involve relaxation to an optimal velocity V̂ ðrÞ, in addition to
pressure (to model drivers’ anticipation) and diffusion. It may be shown that the
uniform flow equilibria in this model become linearly unstable and thus give rise
to solutions that resemble stop-and-go waves, in much the same way as we have
described for car-following models.

Unfortunately, it is known (Daganzo 1995) that in such second-order models
(by which we mean that there is a dynamic equation for velocity v), the pressure
gradient term can cause unphysical effects such as solution modes that propagate
Phil. Trans. R. Soc. A (2008)



2027Pattern mechanisms for highway traffic
downstream faster than traffic, or even backward flowing traffic when density
gradients are extreme. Daganzo’s observation led to a sequence of papers
beginning with Aw & Rascle (2000) and Zhang (2002), which rectified these
issues by evaluating the pressure gradient in a Lagrangian frame that moves with
drivers. The state of the art in this theory is described by Lebacque et al. (2007),
where (1.1) is supplemented by
I t CvI x ZKf ðI Þ; ð4:2Þ
where IZI ðr; vÞ is a vector of so-called Lagrangian markers that are either
conserved on vehicle trajectories or relaxed according to the dynamics of f.
In this setting, Aw & Rascle (2000) use a scalar marker IZvKV̂ ðrÞ with
f ðI ÞZaI .

Model framework (1.1), (4.2) has two particular problems in my view.

(i) First, in common with the standard LWRmodel (equations (1.1) and (1.2)),
a discontinuity in initial data at which traffic accelerates will collapse via
a rarefaction fan when the fundamental diagram (1.3) is strictly convex.
Consequently, this model framework does not propagate the downstream
interface of a stop-and-go wave in the manner that data indicate it
should. Those who adhere to these models thus propose a piecewise-linear
triangular construction for the fundamental diagram, which has coinciden-
tal advantages from the point of view of tractability (Daganzo (1994) and
many subsequent papers). In my view, this is a contrived solution which is
not supported by empirical flow-density data.

(ii) Second, the dispersion relation is incompatible with that of the car-
following theory that we have outlined. Small perturbations to uniform flow
are propagated at the characteristic speeds of the hyperbolic system, either
unchanged or damped via the dynamics of the source term f. In particular,
it is not possible for uniform flow to be linearly unstable unless the source
term itself is excitable or breaks the strict formulation of the rules presented
here (see Greenberg 2004; Siebel & Mauser 2006). In either case, it is
not clear how to inherit the small wavenumber scaling Re lwl2q

2 of the
car-following dispersion relation.

Highway traffic modellers are thus fractured into several communities. First,
we have ‘one-phase’ modellers who use strictly hyperbolic PDEs together with a
triangular fundamental diagram where necessary and who oppose the idea that
traffic flow is unstable at any density. Rather, these researchers propose that
random large-amplitude events at the microscale cause traffic jams (Daganzo
et al. 1999). Second, we have ‘two-phase’ modellers from a theoretical physics
background who believe that instability is at the heart of stop-and-go waves, and
who typically use car-following models since they have yet to establish a PDE
theory with good global existence properties. This latter community is further
fractured owing to disputes concerning the classification of spatio-temporal
patterns (see Schönhof & Helbing 2007 for a comprehensive discussion based on
empirical data). It seems to me that it is necessary to try and reconcile the efforts
of these diverse modelling schools.
Phil. Trans. R. Soc. A (2008)
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Figure 6. Schematic of branches of periodic solutions on a ring road. The semi-norm vampd
maxtvnðtÞKmint vnðtÞ is plotted as the bifurcation parameter h� is varied. The abscissa thus
corresponds to uniform flow solutions where vnðtÞhV ðh�Þ. Solid lines denote linearly stable
solutions whereas dashed lines denote linearly unstable ones, and shaded regions denote bistability
in that there are two coexisting stable solutions. (a) Standard situation where uniform flow is
unstable for mid-range headways. Loss of stability is at subcritical Hopf bifurcations labelled H.
The bifurcating branches of unstable periodic solutions subsequently turn back at cyclic folds (also
known as limit points, labelled LP), to yield a branch of stable large-amplitude solutions that
correspond to stop-and-go waves. (b) A situation in which bistability is possible without uniform
flow ever being unstable.

R. E. Wilson2028
5. New pattern mechanisms based on nonlinear instability

Our discussion now returns to the stability analysis of car-following models and
in particular the simplified situation where there is a large number N of identical
vehicles driving on a single-lane ring road of length Nh�. As we identified in §3, it
is a typical property of such models that the uniform flow solutions lose stability
to small-amplitude, long-wavelength perturbations. Moreover, as parameters
change, stability is usually lost first for mid-range values of h�. A recent sequence
of papers (Gasser et al. 2004; Orosz et al. 2004, 2005; Orosz & Stepan 2006) has
used ideas from dynamical systems theory to analyse what type of time-varying
solution is generated at the loss of linear stability.

The principal tools have been normal form analysis (see Kuznetsov 1995 for an
introduction), in which the car-following model is expanded to cubic order at the
bifurcation so as to analyse the curvature (i.e. sub- or supercritical) of bifurcating
solution branches, and numerical continuation packages such as AUTO (Doedel
et al. 1997) and DDE-BIFTOOL (Engelborghs et al. 2002), which deal with
ordinary and delay differential equation models, respectively. These packages are
able to follow branches of equilibria and periodic solutions of differential equation
systems as parameters are varied. Moreover, stability information is computed
along solution branches and codimension-one bifurcation points where the
stability of solutions changes are detected automatically.

The typical overall form of the bifurcation diagram for the optimal velocity
model is shown in figure 6a (see Gasser et al. (2004) and Orosz et al. (2004, 2005)
for numerical computations). This sketch indicates that as headway is varied, the
loss of stability is subcritical, so that the bifurcating branch of periodic solutions
is itself unstable. Moreover, as the amplitude of this branch increases, there is
Phil. Trans. R. Soc. A (2008)
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subsequently a cyclic fold at which the branch of periodic solutions turns back
and regains stability. The interpretation of this solution structure is that there
are ranges of headway values for which uniform flow is linearly stable and yet
there coexist large-amplitude stop-and-go waves that are themselves linearly
stable. Consequently, real-world traffic may flow apparently smoothly and stably
in normal circumstances, yet an exceptionally large-amplitude perturbation (for
example caused by a truck overtaking a truck) may cause the flow to jump on to
the large-amplitude stop-and-go wave branch.

The bistability property described here may help resolve the conflict that we
described earlier between the two-phase community, where spontaneous flow
breakdown is accepted, and the one-phase hyperbolic PDE/traffic engineering
community, where it is not—since instability at the linear level is no longer
required for pattern formation.

So far we require uniform flow to be linearly unstable over some range of
headways to enable bistability. However, one might design models in which the
bifurcation diagram took the form shown in figure 6b: here uniform flow is
linearly stable at all headway values and yet there is a disconnected branch
(known as an isola) of periodic solutions that correspond to stop-and-go waves.

To this end, we have recently constructed a model for which bistability is
possible with uniform flow stable at all headways. This new model takes the form

f ðhn; _hn; vnÞZaðhn;DvnÞDvn; ð5:1Þ

where DvnZV ðhnÞK vn defines the velocity difference from the standard optimal
velocity model (2.7), and we take

aðhn;DvnÞZ
2:5 if jDvnj!0:05 and 1:4!hn!2:6;

1:5 otherwise:

(
ð5:2Þ

In essence, this construction does a ‘cut-and-paste’ operation on the dynamics of
the standard optimal velocity model by varying the sensitivity parameter a. The
low-a region of phase space admits the large-amplitude (stable) stop-and-go
wave solution, whereas the high-a setting guarantees linear stability of uniform
flow through mid-range headway values (figure 7). However, it is not yet known
whether bistability without instability is possible in models in which the
dynamics has not been contrived in this way.
6. Conclusion

Our over-arching aim is the development of a model framework for forecasting
highway traffic flow. This is a grand challenge in mathematical modelling since
at its core lies the complexity and unpredictability of human driver behaviour.
Moreover, the challenge is multiscale, since the spatio-temporal range of a
forecast should depend on the application in question: ‘queue ahead’ warning
systems operate over scales of several kilometres and several minutes; travel
time forecasts may operate over a scale of hours; whereas strategic planning
forecasts are concerned with the performance of the whole national network
over a time scale of years.
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Figure 7. Stop-and-go wave structure as a periodic solution on a ring road, illustrated here for the
optimal velocity model (2.7) with sensitivity aZ1:5, mean headway h�Z2 and NZ100 vehicles.
(a(i)) Headway h, (ii) velocity v and (iii) DvdV ðhÞKv against time for a single vehicle, showing
the plateau structure. Note that each vehicle’s trajectory is identical to its predecessor up to a
simple time shift, i.e. hnðtÞZhnK1ðtKtÞ and vnðtÞZvnK1ðtKtÞ. (b) Trajectory data T from
(a) re-mapped into ðh;DvÞ phase space, with the uniform flow equilibria added as a horizontal axis
and the dashed line denoting the linearly unstable mid-range of headways. By increasing the
sensitivity a in the shaded region, we may stabilize uniform flow at all headway values yet the
large-amplitude stop-and-go wave solution T persists unchanged.
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In principle, at least, the MIDAS system and similar datasets from overseas
contain sufficient detail for making and evaluating macroscopic forecasts whose
scale is coarser than the 1 min!500 m resolution. However, there is still vigorous
debate over what form mathematical models should take and indeed even in the
fundamental mechanisms for pattern formation.

In particular, the form of the onset of linear instability in car-following models
is entirely generic, occurring via a change in the curvature of the dispersion
relation at zero wavenumber. However, this mechanism is absent from the
models proposed by the hyperbolic PDE community.

In this respect, it seems that the difference between linear and nonlinear
stabilities must be recognized when classifying models. In particular, this
distinction may help resolve conflict since, as we have shown, it is possible for
a car-following model to exhibit bistability where uniform flow is linearly stable
and yet linearly stable stop-and-go waves coexist. In this setting, the one-phase
community is (partially) correct, since uniform flow is linearly stable, yet the two-
phase community is also (partially) correct, since instability, albeit nonlinear
instability, is at the heart of pattern formation. Schönhof & Helbing (2007) have
recently supported this resolution by performing a detailed evaluation of
empirical flow patterns using simulations with bistability properties.

There is now scope for a much more serious quantitative examination of
data and a fitting of models, which needs to take place at the macroscopic PDE
level using standard loop data and at the microscopic level using novel data
sources that have only recently become available, for example camera trajectory
data or unaveraged inductance loop data. In this way, we can expect over the
next few years to definitively resolve the conflict between the various traffic
modelling schools.
Phil. Trans. R. Soc. A (2008)
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