

Han Pu

Rice University

Houston, Texas, USA

Workshop on "Confined Quantum systems", Vienna, Austria, Feb. 2013

Imbalanced Fermi mixtures

 n_{\perp}

- BCS Cooper pairs have zero momentum
- Population imbalance leads to finite-momentum pairs
- FFLO instability results in textured states

Experiments on spin-imbalanced Fermi gas

- Rice (Hulet Group)
 - Science 311, 503 (2006)
 - PRL 97, 190407 (2006)
 - Nuclear Phys. A 790, 88c (2007)
 - J. Low. Temp. Phys. 148, 323 (2007)
 - Nature 467, 567 (2010)

- ENS (Salomon Group)
 PRL 103, 170402 (2009)
- MIT (Ketterle Group)
 - Science 311, 492 (2006)
 - Nature **442**, 54 (2006)
 - PRL 97, 030401 (2006)
 - Science 316, 867 (2007)
 - Nature 451, 689 (2008)

MW. Zwierlein, A. Schirotzek, C.H. Schunck, and W, Ketterle: Science 311, 492-496 (2006)

3D trapped gas: Superfluid core with polarized halo

• FFLO states are favored in 1D: nesting effect of the Fermi surfaces

Phase diagram of trapped 1D Fermi gas:

Theory: Bethe Ansatz + LDA

Rice Experiment:

Liao et al., Nature 467, 567 (2010)

• Mean-Field Bogoliubov-de Gennes study

-able to calculate mean-field superfluid gap-provide direct association between gap and density

• Time-Evolving Block Decimation Method

-unbiased method retaining many-body correlations -will be able to handle stronger interaction strength

Combing two method with complementary advantages

Solving BdG equations

Baksmaty *et al.*, PRA **83**, 023604 (2011) NJP **13**, 055014 (2011)

TEBD implementation

$$H = \int dx \, \sum_{\sigma} \psi_{\sigma}^{\dagger}(x) \left(-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V_{ext} \right) \psi_{\sigma}(x) + U \psi_{\uparrow}^{\dagger}(x) \psi_{\downarrow}^{\dagger}(x) \psi_{\downarrow}(x) \psi_{\uparrow}(x)$$

After spatial discretization:

$$x \to i\Delta x, \quad \psi_{\sigma}(x) \to \psi_{\sigma i}, \quad \frac{d^2}{dx^2}\psi_{\sigma}(x) \to \frac{\psi_{\sigma i+1} - 2\psi_{\sigma i} + \psi_{\sigma i-1}}{(\Delta x)^2}$$

$$H = -t \sum_{\langle ij \rangle, \sigma} \psi_{\sigma i}^{\dagger} \psi_{\sigma j} + U \sum_{i} n_{\uparrow i} n_{\downarrow i} + V_{i} \sum_{i} \left(n_{\uparrow i} + n_{\downarrow i} \right)$$

- Find the ground state within harmonic trap
 - BdG: Solving time-independent BdG Equation self-consistently
 - TEBD: Evolving many-body Schroedinger equation in imaginary time
- Turn off the trapping potential at t=0 and study the ensuing expansion dynamics
 - BdG: Solving time-dependent BdG Equation self-consistently
 - TEBD: Evolving many-body Schroedinger equation in real time

Ground state: BdG vs. TEBD

Evidence of FFLO

$$n_k = \frac{1}{L} \int \int dz dz' \, e^{ik(z-z')} \, O(z,z')$$

$$O(z,z') \equiv \langle \psi^{\dagger}_{\uparrow}(z)\psi^{\dagger}_{\downarrow}(z)\psi_{\downarrow}(z')\psi_{\uparrow}(z')\rangle$$

Evidence of FFLO

The peak momentum q matches well with π/d

Seeing FFLO during expansion

Seeing FFLO during expansion

Lu, Baksmaty, Bolech and Pu, PRL 108, 225302 (2012)

Spin density modulation becomes more pronounced during expansion!

In 1D, low density means stronger (relative) interaction.

$$E_{\text{int}} \sim \rho_{1D}$$

$$E_{\text{int}} \sim d^{-2} \sim \rho_{1D}^{2}$$

$$E_{\text{kin}} \sim d^{-2} \sim \rho_{1D}^{2}$$

$$E_{\text{kin}} \sim d^{-2} \sim \rho_{3D}^{2/3}$$

$$E_{\text{kin}} \sim d^{-2} \sim \rho_{3D}^{2/3}$$

$$E_{\text{int}} / E_{\text{kin}} \sim \rho_{1D}^{1/3}$$

$$E_{\text{int}} / E_{\text{kin}} \sim \rho_{1D}^{1/3}$$

$$3D$$

Atom-pair interaction: a spin transport probe

 $g_{1D} = -6$

 $g_{1D} = -200$

Atom-pair interaction: a spin transport probe

Weakly interacting case: enhanced attractive interaction between the incoming spin- \uparrow and the spin- \downarrow particle.

Strongly interacting case: weakly repulsive interaction is between the incoming $spin - \uparrow$ and the bosonic molecule.

From 1D to 3D: a BdG study

From 1D to 3D: a BdG study

0.3

0.4

0.5

0.1

┢

0.2

Gap

0.4

0.5

0.6

0.3

0.2

0.

-0.2

-0.4

_ z/Z

0.6

From 1D to 3D: a BdG study

$$V(r,z) = \frac{1}{2}m(\omega_r^2(x^2 + y^2) + \omega_z^2 z^2)$$
$$A = \omega_r / \omega_z$$

- Cold atoms are ideal platform to study dimensional effects
- Lower spatial dimensions \rightarrow exotic quantum phases
- Equilibrium and non-equilibrium physics can be probed

Mean-field theory may provide qualitatively correct answers even at low D. Fermions are interesting.

- Leslie Baksmaty
- Hong Lu
- Carlos Bolech
- Randy Hulet

