Absorbing boundaries: Exterior Complex Scaling versus Perfectly Matched Layers
 Dephasing in coherently split Quasicondensates

Hans Peter Stimming<sup>†</sup>

<sup>†</sup> Wolfgang Pauli Institut c/o Fak. Mathematik Univ. Wien

WPI Workshop on Confined Quantum Systems, Vienna, 7 Feb. 2013

< □ > < □ > < □ > < □ > < □ > < □ > = □

# Part I: Exterior Complex Scaling versus Perfectly Matched Layers

Armin Scrinzi, Arnold Sommerfeld Center, LMU Munich Norbert Mauser, WPI and Univ. Vienna

Problem: Confined simulation of infinite problem

- Computational domain is finite
- Treatment of boundary: In time dependent problem, need absorption of "outgoing parts"

(日) (圖) (문) (문) (문)

(Cases without confinement)

Methods for boundary treatment:

- Exterior Complex Scaling (ECS): uses variable rescaling
- Perfectly Matched Layers (PML): similar to ECS
- Complex Absorbing potentials (CAP): "Optical potential", simple method, large errors
- Transparent Boundary Conditions: by Dirichlet-to-Neumann maps, most exact method

Goal: discuss theoretical differences of the ECS and PML approach, and applicability and limitations of both methods

We consider time evolution problems of the type

$$i\frac{\partial}{\partial t}\psi = \mathbf{D}\psi$$

with self-adjoint operator D.

This includes both hyperbolic and dispersive problems, 2 example cases: 1) TDSE:

$$i\frac{\partial}{\partial t}\Psi(x,t) = [-\frac{1}{2}\Delta + V(x)]\Psi(x,t)$$

2) Scalar wave equation

$$\frac{\partial^2}{\partial t^2}u = b\nabla \cdot (a\nabla u)$$

Self-adjoint case (a=b): write as system

$$\frac{\partial}{\partial t} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 0 & a\nabla \cdot \\ a\nabla \cdot & 0 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}$$

and rotate coordinates  $\phi_{\pm} = (u \pm v)/\sqrt{2}$  to get:

$$i\frac{\partial}{\partial t}\phi_{\pm} = \pm ia\nabla\phi_{\pm}$$

-) Exterior Complex Scaling: Introduced in the 60s for Schrödinger equations,

B. Simon: see Reed - Simon Vol. IV.

-) Perfectly Matched Layers: introduced in '94 for Wave and Maxwell equations:

J. Berenger, J. Comp. Phys. 114 (2) (1994) 363-379.

F: bounded computational domain (region of interest)

Assume that the spectral functions are plane waves  $|\omega\rangle = e^{i\mathbf{k}\cdot\mathbf{x}}$ . Then a damping term  $s(\mathbf{k},\mathbf{x})$  is added:

$$|\omega
angle_{s}:=e^{i\mathbf{k}\cdot\mathbf{x}(1+is(\mathbf{k},\mathbf{x}))}=e^{i\mathbf{k}\cdot\mathbf{x}}e^{-(\mathbf{k}\cdot\mathbf{x})s(\mathbf{k},\mathbf{x})}$$

such that  $s(\mathbf{k}, \mathbf{x}) = 0$  for  $x \in F$ . For

$$\operatorname{sign}(\mathbf{k} \cdot \mathbf{x}) = \operatorname{sign}[\mathbf{s}(\mathbf{k}, \mathbf{x})],$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

the re-scaled spectral functions are decaying.

Idea of both: rescale both the variable and the operator  $\boldsymbol{D}\to\boldsymbol{D}_s$  such that

- its spectral functions decay and become integrable (Absorption)
- eigenvalues become complex and the time evolution is non-growing
- the solution remains unchanged inside F

Numerical algorithm:

- Cut-Off in decaying region outside of F (Boundary layer), error can be made small because of decay.

《曰》 《聞》 《臣》 《臣》 三臣 …

- Alternative: "Infinite Range ECS (irECS)": FEM on F, decaying element functions with infinite range outside of F.

A. Scrinzi, Phys Rev A 81, 053845 (2010)

Theoretical steps toward this goal:

- (a) Introduce *real stretching* of coordinates, depending on a parameter λ, ideally show analyticity properties of the spectral representation of the operator w.r.t. λ.
- (b) Analytic continuation of this scaling for complex  $\lambda = \phi + i\theta$ , such that the analytically continued spectral functions are square-integrable.
- (c) Show that the eigenvalues lead to non-growing solutions
- (d) Show that analyticity carries over to the solutions on F when propagated in time and solution remains unchanged on F.

Both methods follow this approach. The difference lies in the choice of  $\lambda$ . For Schrödinger, ECS theory identifies a class of potentials which ensure analyticity in (a).

Also, it has been shown that some isolated EV are conserved and the cont. spectrum is rotated into the complex plane\*.

\* Combes, Duclos, Seiler et.al., Comm. Math. Phys. 110 (1987)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

(a) Real stretching: define a coordinate transform x = x(y). Rescale both coordinate and eigenfunctions

$$|\phi
angle 
ightarrow |\phi_s
angle := U |\phi
angle = \sqrt{J(y)} \phi(x(y)).$$

where  $J(y) = \frac{\partial x}{\partial y}$ : rescaling is  $L^2$ -unitary. Now also rescale the operator, such that the rescaled equation has same form as the unstretched one:

$$i\frac{\partial}{\partial t}|\phi_s\rangle = U\mathbf{D}U^{\dagger}|\phi_s\rangle := \mathbf{D}_s|\phi_s\rangle$$
 (1)

Define the stretching with  $\lambda \in \mathbb{R}$  by:

$$y(x) = \int_0^x d\xi [1 + \lambda \sigma(\xi)]$$

for  $\sigma \geq 0$ , non-decreasing.

If the eigenfct. and  $\omega_{\lambda}$  are analytic w.r.t  $\lambda$ , then the solution of (1) is an analytic function of  $\lambda$ .

**Example**: Global scaling, one-way wave equation:  $\mathbf{D} = i\partial_x$ ,  $\sigma(\xi) \equiv 1$ . Then

$$|\omega
angle_{\lambda}=e^{-i\omega(1+\lambda)x}$$

The new eigenvalues are  $\omega_{\lambda} = (1 + \lambda)\omega$ . Analyticity is true. When the time evolution in spectral expansion is formulated in the measure  $\mu(\omega, \lambda) = \omega_{\lambda}$ , also the propagation is analytic.

(b) Continuation to complex plane: let  $\lambda \in \mathbb{C}$ . Need:  $\mu(\omega, \lambda) = \omega_{\lambda}$  has negative imaginary part in order to have decay property.

*Problem:* sign of  $\Im\{\mu\}$  depends on sign of  $\omega$ , so decay can not be achieved for all  $\omega$ : If  $\omega < 0$ , decay is true if  $\Im\{\lambda\} > 0$ , and vice-versa for  $\omega > 0$ : time evolution will be unstable !

◆□> ◆□> ◆目> ◆目> ◆日> ● ●

*Remark:* In case of Schrödinger equation, this problem does not appear: spectrum of  $\mathbf{D} = -\Delta$  is the positive half axis, so  $\Im\{\lambda\} < 0$  will give decay. **Different Approach:** Perfectly Matched Layers (**PML**): make  $\lambda$  dependent on eigenvalue  $\omega$ :  $\lambda_s = \lambda_s(\omega)$ . Usual choice:  $\lambda_s = \lambda/\omega$ . In the example, take:

$$\mu(\omega,\lambda) = (1+rac{\lambda}{\omega})\omega = \omega + \lambda$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Then:  $\Im\{\mu\} = \Im\{\lambda\}$ , and decay is guaranteed for  $\Im\{\lambda\} < 0$ . -> step (c) satisfied.

#### (d), accuracy of time propagation inside of F:

need to formulate time propagation in  $\omega$ -dependent scaling. Assume completeness and orthogonality for rescaled basis, but not unitarity. The decomposition of unity in this rescaled basis is

$$\mathbf{1} = \int_{\sigma(\mathbf{D})} |\omega, \lambda\rangle \rho(\omega, \lambda) \langle \omega, \lambda|$$

The time evolution in this basis is:

$$irac{\partial}{\partial t}\langle\omega,\lambda|\phi_{\lambda}(t)
angle=\int d\omega'\langle\omega,\lambda|{f D}_{\lambda}|\omega',\lambda
angle
ho(\omega',\lambda)\langle\omega',\lambda|\phi_{\lambda}(t)
angle$$

<ロ> (四) (四) (三) (三) (三)

### Time propagation in PML

Let us assume  $\boldsymbol{\mathsf{D}}_\lambda$  is defined such that

$$\langle \omega, \lambda | \mathbf{D}_{\lambda} | \omega', \lambda 
angle = \delta(\omega - \omega') g(\omega, \lambda),$$

then

$$i \frac{\partial}{\partial t} \langle \omega, \lambda | \phi_{\lambda}(t) \rangle = g(\omega, \lambda) \rho(\omega, \lambda) \langle \omega, \lambda | \phi_{\lambda}(t) \rangle$$

with the solutions

$$\langle \omega, \lambda | \phi_{\lambda}(t) \rangle = \exp[-itg(\omega, \lambda)\rho(\omega, \lambda)] \langle \omega, \lambda | \phi_{\lambda}(0) \rangle.$$

In x-space, write the basis functions as

$$\langle x|\omega,\lambda
angle=:\kappa_{\omega}(x,\lambda)=\kappa_{\omega}(x,0)\quad \forall x\in {\sf F},$$

define  $\tilde{\phi}_{\lambda}(\omega, 0)\langle \omega, \lambda | \phi_{\lambda}(0) \rangle$ , and the solution in *x*-space is

$$\phi_{\lambda}(x,t) = \int d\omega \kappa_{\omega}(x,\lambda) \rho(\omega,\lambda) e^{-itg(\omega,\lambda)\rho(\omega,\lambda)} \tilde{\phi}_{\lambda}(\omega,0)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The time propagation is accurate if

$$\phi_{\lambda}(x,t) = \phi_0(x,t) \quad \forall x \in F$$

under the condition that the initial data is constrained to F. By assumption, on F the  $\kappa_{\omega}(x, \lambda)$  do not depend on  $\lambda$ , i.e.

$$\phi_{\lambda}(x,t) = \int d\omega \kappa_{\omega}(x) 
ho(\omega,\lambda) e^{-itg(\omega,\lambda)
ho(\omega,\lambda)} \widetilde{\phi}(\omega,0)$$

for  $x \in F$ . Compare this to the solution according to the original time-evolution:

$$\phi(x,t)=\int d\omega\kappa_{\omega}(x)e^{-it\omega}\tilde{\phi}(\omega,0).$$

《曰》 《聞》 《臣》 《臣》 三臣 …

• For ECS with  $\omega$ -independent scaling:  $\rho \equiv 1$  and  $g(\omega, \lambda) = \omega$ , so time evolution is exact

• For the case of PML:

-)  $\rho(\omega, \lambda)$  can be absorbed in the initial data  $\tilde{\phi}_{\lambda}(\omega, 0)$ .

-) need moreover that  $g(\omega, \lambda)\rho(\omega, \lambda) = \omega$ : need to define  $\mathbf{D}_{\lambda}$  in such a way that  $g(\omega, \lambda) = \frac{\omega}{\rho(\omega, \lambda)}$ . In general, this leads to an integro-differential operator.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣……

In usual applications of PML: no unitary rescaling of solution.

Additional  $\omega$ -dependence is treated in time domain by a set of auxillary equations outside of F.

The solutions do not always decay in time.

Example for failure of PML: Coaxial waveguides (Aniosotropic case). Different signs of phase velocity and group velocity: at same phase velocity, there exist solutions with both signs of group velocity: "Backward Waves". PML leads to instabilities.

◆□> ◆□> ◆目> ◆目> ◆日> ● ●

Ibanescu, Johnson et.al., PRL 92, 063903 (2004), Loh, Oskooi, Johnson et.al., Phys. Rev. E 79, 065601(R) (2009) Conclusion:

- PML and ECS are two different methods to obtain absorption by scaling.
- ECS works well for Schrödinger type equations: decay guaranteed, analyticity for many applications (depending on potential)
- For hyperbolic equations, ECS fails.
- PML results in reflectionless absorption. Treatment of hyperbolic eqations possible.
- Time evolution of PML can be distorted, stability is not always guaranteed.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

## Part II: Dephasing in coherently split Quasicondensate

Collaboration:

- J. Schmiedmayer, Atom Institut, Vienna Tech. Univ.
- I. Mazets, Atom Institut, Vienna Tech. Univ.

Norbert Mauser, WPI and Univ. Vienna

- Experiment: Splitting of BEC in double well trap
- (small) fluctuations exist in phase and density: Quasicondensate

• Decay of correlation after splitting

Analogous to the double-slit experiment for photons (light), but now for atoms (rubidium) of a Bose-Einstein condensate (BEC)

- $\bullet\,$  Creation of BEC at extremely low temperatures (  $\sim 10 \mu K$  ), sophisticated cooling techniques necessary
- BEC confined in a trap: harmonic potential well, realized with combination of static and radio-frequency (RF) magnetic fields, numerical simulation starts here
- Splitting the condensate: splitting single well  $\rightarrow$  double well by slowly changing parameters of RF-currents
- Free expansion: Sudden switch off of the external potential, recombine BEC clouds in time-of-flight expansion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Measurement of interference pattern, ...

### Dephasing in coherently split Quasicondensates

Fluctuations are completely correlated at moment of splitting, but during time evolution, correlation decays.

Model this case by two GPE equations in 1 - d:  $\psi_1(z, t)$ ,  $\psi_2(z, t)$ .

- Fluctuations in initial data modeled as thermal excitations

- Coherent fluctuations in two condensates modeled by excitations in odd and even modes  $% \left( {{{\boldsymbol{x}}_{i}}} \right)$ 

Let  $\psi_j(z, 0) = n_j(z, 0)e^{i\phi_j(z, 0)}$ , and

$$\begin{array}{lll} \phi_{1,2}(z,0) & = & \displaystyle \frac{\phi_+(z,0)\pm\phi_-(z,0)}{\sqrt{2}}, \\ n_{1,2}(z,0) & = & \displaystyle n_{\rm 1D}+\frac{\delta n_+(z,0)\pm\delta n_-(z,0)}{\sqrt{2}} \end{array}$$

where

$$\begin{split} \delta n_{\pm}(z,0) &= 2\sqrt{\frac{n_{\mathrm{1D}}}{L}}\sum_{k}\sqrt{S_{k}}B_{k}^{\pm}\cos(kz+\zeta_{k}^{\pm}), \\ \phi_{\pm}(z,0) &= \frac{1}{\sqrt{n_{\mathrm{1D}}L}}\sum_{k}\frac{1}{\sqrt{S_{k}}}B_{k}^{\pm}\sin(kz+\zeta_{k}^{\pm}), \end{split}$$

where  $B_k^{\pm}$  is a positive random number whose square is exponentially distributed with mean

$$\langle |B_k^{\pm}|^2 \rangle = \frac{k_{\rm B} I_{\pm}}{\sqrt{\frac{\hbar^2 k^2}{2m} \left(\frac{\hbar^2 k^2}{2m} + 2\mu\right)}},$$

Parameters in this model:

 $n_{1D}$ : condensate background density, T: temperature ,

 $\omega_r$ : radial trapping frequency for quasi-1D trap

Chemical potential:  $\mu = 2\hbar\omega_r n_{1D}a_s$ . Coherence factor (Quantity of interest):

$$\Psi(t) = \langle \ \psi_1^*(z,t) \psi_2(z,t) \ 
angle$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣……

Dephasing:

- propagate GPE in time
- evaluate correlation  $\int \psi_1^*(z,t)\psi_2(z,t)dz$
- obtain  $\Psi(t)$  by averaging over all statistical realizations

Theory (and experiment) :  $\Psi(t) \sim \exp\left[-\left(\frac{t}{t_0}\right)^{\alpha}\right]$ ,  $\alpha = 2/3$ ,  $t_0 = ?$ Theoretical hypothesis:  $t_0 \sim \frac{n_{D}^2}{T^2}$ , independent of  $\omega_r$ .

## Dephasing in coherently split Quasicondensates

Simulation results: Time evolution of the full distribution function



#### Simulation results:



Figure: Left: coherence factor  $\Psi(t)$  for different radial trapping frequencies, right: Dependence of  $t_0$  on  $n_{1D}$ , for  $T_+ = 70$  nK and 90 nK.

<ロ> (四) (四) (日) (日) (日)



Figure: Dependence of relaxation time  $t_0$  on  $n_{1D}/T$ 

- "Fluctuations and stochastic processes in one-dimensional many-body quantum systems", H.P. Stimming, N.J. Mauser, J. Schmiedmayer, I.E. Mazets, Phys.Rev.Lett 105 (2010) 015301
  - "Dephasing in coherently-split quasicondensates", H.P. Stimming, N.J. Mauser, J. Schmiedmayer, I.E. Mazets, Phys.Rev.A **63** (2011) 023618

イロト イヨト イヨト イヨト

Thank you for your attention.

◆ロ → ◆母 → ◆臣 → ◆臣 → ○○○