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Absorbing boundaries in time dependent problems

Part I: Exterior Complex Scaling versus
Perfectly Matched Layers
Armin Scrinzi, Arnold Sommerfeld Center, LMU Munich
Norbert Mauser, WPI and Univ. Vienna

Problem: Confined simulation of infinite problem

Computational domain is finite

Treatment of boundary: In time dependent problem, need absorption of
“outgoing parts”
(Cases without confinement)



Absorbing boundaries in time dependent problems

Methods for boundary treatment:

Exterior Complex Scaling (ECS): uses variable rescaling

Perfectly Matched Layers (PML): similar to ECS

Complex Absorbing potentials (CAP): ”Optical potential”, simple method, large
errors

Transparent Boundary Conditions: by Dirichlet-to-Neumann maps, most exact
method

Goal: discuss theoretical differences of the ECS and PML approach, and applicability
and limitations of both methods



Time dependent evolution problems

We consider time evolution problems of the type

i
∂

∂t
ψ = Dψ

with self-adjoint operator D.
This includes both hyperbolic and dispersive problems, 2 example cases:
1) TDSE:

i
∂

∂t
Ψ(x , t) = [−

1

2
∆ + V (x)]Ψ(x , t)

2) Scalar wave equation
∂2

∂t2
u = b∇ · (a∇u)

Self-adjoint case (a=b): write as system

∂

∂t

(
u
v

)
=

(
0 a∇·

a∇· 0

)(
u
v

)
and rotate coordinates φ± = (u ± v)/

√
2 to get:

i
∂

∂t
φ± = ±ia∇φ±



Absorbing boundaries by coordinate scaling

-) Exterior Complex Scaling: Introduced in the 60s for Schrödinger equations,
B. Simon: see Reed - Simon Vol. IV.
-) Perfectly Matched Layers: introduced in ’94 for Wave and Maxwell
equations:
J. Berenger, J. Comp. Phys. 114 (2) (1994) 363-379.

F : bounded computational domain (region of interest)

Assume that the spectral functions are plane waves |ω〉 = e ik·x. Then a
damping term s(k, x) is added:

|ω〉s := e ik·x(1+is(k,x)) = e ik·xe−(k·x)s(k,x)

such that s(k, x) = 0 for x ∈ F . For

sign(k · x) = sign[s(k, x)],

the re-scaled spectral functions are decaying.



Absorbing boundaries by coordinate scaling

Idea of both: rescale both the variable and the operator D→ Ds such that

its spectral functions decay and become integrable (Absorption)

eigenvalues become complex and the time evolution is non-growing

the solution remains unchanged inside F

Numerical algorithm:
- Cut-Off in decaying region outside of F (Boundary layer), error can be made
small because of decay.

- Alternative: “Infinite Range ECS (irECS)”: FEM on F , decaying element
functions with infinite range outside of F .

A. Scrinzi, Phys Rev A 81, 053845 (2010)



Absorbing boundaries by complex coordinate stretching

Theoretical steps toward this goal:

(a) Introduce real stretching of coordinates, depending on a parameter λ,
ideally show analyticity properties of the spectral representation of the
operator w.r.t. λ.

(b) Analytic continuation of this scaling for complex λ = φ+ iθ, such that the
analytically continued spectral functions are square-integrable.

(c) Show that the eigenvalues lead to non-growing solutions

(d) Show that analyticity carries over to the solutions on F when propagated
in time and solution remains unchanged on F .

Both methods follow this approach. The difference lies in the choice of λ.
For Schrödinger, ECS theory identifies a class of potentials which ensure
analyticity in (a).
Also, it has been shown that some isolated EV are conserved and the cont.
spectrum is rotated into the complex plane∗.

∗ Combes, Duclos, Seiler et.al., Comm. Math. Phys. 110 (1987)



Real stretching

(a) Real stretching:
define a coordinate transform x = x(y). Rescale both coordinate and
eigenfunctions

|φ〉 → |φs〉 := U|φ〉 =
√

J(y)φ(x(y)).

where J(y) = ∂x
∂y

: rescaling is L2-unitary. Now also rescale the operator, such
that the rescaled equation has same form as the unstretched one:

i
∂

∂t
|φs〉 = UDU†|φs〉 := Ds |φs〉 (1)

Define the stretching with λ ∈ R by:

y(x) =

∫ x

0

dξ[1 + λσ(ξ)]

for σ ≥ 0, non-decreasing.
If the eigenfct. and ωλ are analytic w.r.t λ, then the solution of (1) is an
analytic function of λ.



Real stretching, Continuation to complex case

Example: Global scaling, one-way wave equation: D = i∂x ,
σ(ξ) ≡ 1. Then

|ω〉λ = e−iω(1+λ)x

The new eigenvalues are ωλ = (1 + λ)ω. Analyticity is true. When the time
evolution in spectral expansion is formulated in the measure µ(ω, λ) = ωλ, also
the propagation is analytic.

(b) Continuation to complex plane: let λ ∈ C.
Need: µ(ω, λ) = ωλ has negative imaginary part in order to have decay
property.
Problem: sign of ={µ} depends on sign of ω, so decay can not be achieved for
all ω: If ω < 0, decay is true if ={λ} > 0, and vice-versa for ω > 0: time
evolution will be unstable !



ECS vs. PML

Remark: In case of Schrödinger equation, this problem does not appear:
spectrum of D = −∆ is the positive half axis, so ={λ} < 0 will give decay.

Different Approach: Perfectly Matched Layers (PML):
make λ dependent on eigenvalue ω: λs = λs(ω). Usual choice: λs = λ/ω.
In the example, take:

µ(ω, λ) = (1 +
λ

ω
)ω = ω + λ

Then: ={µ} = ={λ}, and decay is guaranteed for ={λ} < 0.
− > step (c) satisfied.



Time propagation in PML

(d), accuracy of time propagation inside of F :
need to formulate time propagation in ω-dependent scaling.
Assume completeness and orthogonality for rescaled basis, but not unitarity.
The decomposition of unity in this rescaled basis is

1 =

∫
σ(D)

|ω, λ〉ρ(ω, λ)〈ω, λ|

.
The time evolution in this basis is:

i
∂

∂t
〈ω, λ|φλ(t)〉 =

∫
dω′〈ω, λ|Dλ|ω′, λ〉ρ(ω′, λ)〈ω′, λ|φλ(t)〉



Time propagation in PML

Let us assume Dλ is defined such that

〈ω, λ|Dλ|ω′, λ〉 = δ(ω − ω′)g(ω, λ),

then

i
∂

∂t
〈ω, λ|φλ(t)〉 = g(ω, λ)ρ(ω, λ)〈ω, λ|φλ(t)〉

with the solutions

〈ω, λ|φλ(t)〉 = exp[−itg(ω, λ)ρ(ω, λ)]〈ω, λ|φλ(0)〉.

In x-space, write the basis functions as

〈x |ω, λ〉 =: κω(x , λ) = κω(x , 0) ∀x ∈ F ,

define φ̃λ(ω, 0)〈ω, λ|φλ(0)〉, and the solution in x-space is

φλ(x , t) =

∫
dωκω(x , λ)ρ(ω, λ)e−itg(ω,λ)ρ(ω,λ)φ̃λ(ω, 0).



Time propagation in PML

The time propagation is accurate if

φλ(x , t) = φ0(x , t) ∀x ∈ F

under the condition that the initial data is constrained to F . By assumption, on
F the κω(x , λ) do not depend on λ, i.e.

φλ(x , t) =

∫
dωκω(x)ρ(ω, λ)e−itg(ω,λ)ρ(ω,λ)φ̃(ω, 0)

for x ∈ F . Compare this to the solution according to the original
time-evolution:

φ(x , t) =

∫
dωκω(x)e−itωφ̃(ω, 0).

• For ECS with ω-independent scaling: ρ ≡ 1 and g(ω, λ) = ω, so time
evolution is exact



Time propagation in PML

• For the case of PML:
-) ρ(ω, λ) can be absorbed in the initial data φ̃λ(ω, 0).
-) need moreover that g(ω, λ)ρ(ω, λ) = ω: need to define Dλ in such a way
that g(ω, λ) = ω

ρ(ω,λ)
. In general, this leads to an integro-differential operator.

In usual applications of PML: no unitary rescaling of solution.
Additional ω-dependence is treated in time domain by a set of auxillary
equations outside of F .
The solutions do not always decay in time.



Time propagation for PML and ECS

Example for failure of PML: Coaxial waveguides (Aniosotropic case).
Different signs of phase velocity and group velocity: at same phase velocity,
there exist solutions with both signs of group velocity: “Backward Waves”.
PML leads to instabilities.

Ibanescu, Johnson et.al., PRL 92, 063903 (2004),
Loh, Oskooi, Johnson et.al., Phys. Rev. E 79, 065601(R) (2009)



Exterior Complex Scaling versus Perfectly Matched Layers

Conclusion:

PML and ECS are two different methods to obtain absorption by scaling.

ECS works well for Schrödinger type equations: decay guaranteed,
analyticity for many applications (depending on potential)

For hyperbolic equations, ECS fails.

PML results in reflectionless absorption. Treatment of hyperbolic eqations
possible.

Time evolution of PML can be distorted, stability is not always guaranteed.



Dephasing in coherently split Quasicondensates

Part II: Dephasing in coherently split
Quasicondensate

Collaboration:
J. Schmiedmayer, Atom Institut, Vienna Tech. Univ.
I. Mazets, Atom Institut, Vienna Tech. Univ.
Norbert Mauser, WPI and Univ. Vienna

Experiment: Splitting of BEC in double well trap

(small) fluctuations exist in phase and density: Quasicondensate

Decay of correlation after splitting



Experiment: Matter-wave interference in a double well

Analogous to the double-slit experiment for photons (light),
but now for atoms (rubidium) of a Bose-Einstein condensate (BEC)

Creation of BEC at extremely low temperatures (∼ 10µK), sophisticated
cooling techniques necessary

BEC confined in a trap: harmonic potential well, realized with
combination of static and radio-frequency (RF) magnetic fields, numerical
simulation starts here

Splitting the condensate: splitting single well → double well by slowly
changing parameters of RF-currents

Free expansion: Sudden switch off of the external potential, recombine
BEC clouds in time-of-flight expansion

Measurement of interference pattern, . . .



Dephasing in coherently split Quasicondensates

Fluctuations are completely correlated at moment of splitting, but during time
evolution, correlation decays.
Model this case by two GPE equations in 1− d : ψ1(z, t), ψ2(z, t).
- Fluctuations in initial data modeled as thermal excitations
- Coherent fluctuations in two condensates modeled by excitations in odd and even
modes
Let ψj (z, 0) = nj (z, 0)e iφj (z,0), and

φ1,2(z, 0) =
φ+(z, 0)± φ−(z, 0)

√
2

,

n1,2(z, 0) = n1D +
δn+(z, 0)± δn−(z, 0)

√
2

where

δn±(z, 0) = 2

√
n1D

L

∑
k

√
SkB

±
k cos(kz + ζ±k ),

φ±(z, 0) =
1

√
n1DL

∑
k

1
√
Sk

B±k sin(kz + ζ±k ),

where B±k is a positive random number whose square is exponentially distributed with
mean

〈|B±k |
2〉 =

kBT±√
~2k2

2m

(
~2k2

2m
+ 2µ

) ,



Dephasing in coherently split Quasicondensates

Parameters in this model:
n1D : condensate background density, T : temperature ,
ωr : radial trapping frequency for quasi-1D trap

Chemical potential: µ = 2~ωrn1Das .
Coherence factor (Quantity of interest):

Ψ(t) = 〈 ψ∗1 (z , t)ψ2(z , t) 〉

Dephasing:

propagate GPE in time

evaluate correlation
∫
ψ∗1 (z , t)ψ2(z , t)dz

obtain Ψ(t) by averaging over all statistical realizations

Theory (and experiment) : Ψ(t) ∼ exp
[
−
(

t
t0

)α]
, α = 2/3, t0 = ?

Theoretical hypothesis: t0 ∼ n2
1D
T 2 , independent of ωr .



Dephasing in coherently split Quasicondensates

Simulation results: Time evolution of the full distribution function
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Dephasing in coherently split Quasicondensates

Simulation results:
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Figure: Left: coherence factor Ψ(t) for different radial trapping frequencies, right:
Dependence of t0 on n1D , for T+ = 70 nK and 90 nK.



Dephasing in coherently split Quasicondensates
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Figure: Dependence of relaxation time t0 on n1D/T

“Fluctuations and stochastic processes in one-dimensional many-body quantum
systems”, H.P. Stimming, N.J. Mauser, J. Schmiedmayer, I.E. Mazets,
Phys.Rev.Lett 105 (2010) 015301

“Dephasing in coherently-split quasicondensates”, H.P. Stimming, N.J. Mauser,

J. Schmiedmayer, I.E. Mazets, Phys.Rev.A 63 (2011) 023618



Dephasing in coherently split Quasicondensates

Thank you for your attention.


