A two-component nonlinear Schrödinger system with linear coupling

Rada M. Weishäupl

Faculty of Mathematics, University of Vienna joint work with Paolo Antonelli, University of Pisa

February 6, 2013

イロン イヨン イヨン イヨン

System of two coupled nonlinear Schrödinger equations with an external driven field

Let us consider:

$$i\partial_t \psi_1 = -\frac{1}{2} \Delta \psi_1 + \frac{\gamma^2}{2} |x|^2 \psi_1 + \beta_{11} |\psi_1|^2 \psi_1 + \beta_{12} |\psi_2|^2 \psi_1 + \lambda \psi_2$$

$$i\partial_t \psi_2 = -\frac{1}{2} \Delta \psi_2 + \frac{\gamma^2}{2} |x|^2 \psi_2 + \beta_{12} |\psi_1|^2 \psi_2 + \beta_{22} |\psi_2|^2 \psi_2 + \lambda \psi_1$$

$$\psi_1(x, 0) = \varphi_1(x), \quad \psi_2(x, 0) = \varphi_2(x)$$
(1)

with $x \in \mathbb{R}^N$ in $N \leq 3$

- ▶ $\beta_{jj}, \beta_{12} \in \mathbb{R}$ intraspecific and interspecific scattering lengths, respectively
- $\lambda \in \mathbb{R}$ external driven field constant

イロト イポト イヨト イヨト

Physical Experiments

- ▶ First experiment concerning with the binary Bose-Einstein condensate (BEC) was performed in JILA with |F = 2, m_f = 2 > and |1, −1 > spin states of ⁸⁷Rb. (C. J. Myatt et al., Phys. Rev. Lett., 78 (1997))
- When λ = 0, the above system models a mixture of Bose-Einstein condensates consisting of two different hyperfine states of Rubidium atoms confined in the same harmonic trap. By applying a weak magnetic (driven) field with the Rabi frequency λ, the two components are coupled in the overlap region. This coupling realizes a Josephson-type junction and gives rise to nonlinear oscillations in the relative populations.(J.Williams et. al, Phys.Rev.A,59(1999))

(《圖》 《문》 《문》 - 문

Physical literature

- question: will two-component BEC with one repulsive and one attractive component collapse or may it reach a stable state?
- ➤ a stabilization method for the single Bose-Einstein condensate → controle the scattering length using the Feshbach-resonance:

Phys. Rev. A **67** (2003), 013605; Phys. Rev. Lett **90** (2003) 040403.

for the two-component BEC Saito et. al. proposed to use the Rabi oscillations in order to achieve oscillations of the scattering lengths and consequently stabilize the Bose-Einstein condensate.

Phys. Rev. A 76 (2007) 053619

イロト イポト イヨト イヨト

Motivation

- Does two-component NLS-system with focusing and defocusing nonlinearities in the presence of the Rabi frequency blow-up or exist globally?
- Does the Rabi term influence the long time behavior of the system, thus can it avoid blow-up?
- Numerical experiments suggest the fact that the Rabi frequency may affect the long time behavior of the system Math. Models Methods Appl. Sci. (2013) A.Jüngel, R.W.
- It will make sense to deal with the case of great Rabi frequencies ⇒ we are interested in asymptotics when |λ| → ∞.

・ロン ・回と ・ヨン ・ヨン

Outline

Two-component NLSE in an external driven field

Local Existence Global Existence Sufficient condition for the blow-up of the system Sharp thresholds for N = 2Ground State The Effect of the External Driven Field

Asymptotics for $|\lambda| \to \infty$

Main result Sketch of the Proof Properties of the Limiting System

- 4 同 6 4 日 6 4 日 6

Local Existence Global Existence Sufficient condition for the blow-up of the system Sharp thresholds for N = 2Ground State The Effect of the External Driven Field

Some Definitions I

Definition

For functions $\Psi = (\psi_1, \psi_2)^T : \mathbb{R}^N \times [0, T] \to \mathbb{C}^2$, we define the norms, where $\|\psi_j(t)\|_{L^p(\mathbb{R}^N)}$ is the standard L^p -norm:

$$\begin{split} \|\Psi(t)\|_{p} &= \begin{cases} \left(\sum_{j=1}^{2} \|\psi_{j}(t)\|_{L^{p}(\mathbb{R}^{N})}^{p}\right)^{1/p} \text{ for } 1 \leq p < \infty \\ \sum_{j=1}^{2} \|\psi_{j}(t)\|_{L^{\infty}(\mathbb{R}^{N})} \\ \|\Psi\|_{q,p} &= \left\| \|\Psi(t)\|_{L^{p}(\mathbb{R}^{N})} \right\|_{L^{q}(0,T)} \end{split}$$

with the corresponding Banach spaces $L^{p}(\mathbb{R}^{N})$ and $L^{q}((0, T), L^{p}(\mathbb{R}^{N}))$.

Local Existence Global Existence Sufficient condition for the blow-up of the system Sharp thresholds for N = 2Ground State The Effect of the External Driven Field

Some Definitions II

We introduce the energy-type space

$$\Sigma(\mathbb{R}^N) := \{ u \in H^1(\mathbb{R}^N) : |xu| \in L^2(\mathbb{R}^N) \}.$$

We remind the definition of an admissible pair (q, r):

$$\frac{2}{q}=N\left(\frac{1}{2}-\frac{1}{r}\right).$$

with $2 \le r \le \frac{2N}{N-2}$ ($2 \le r \le \infty$ if N = 1, and $2 \le r < \infty$ if N = 2) (q', r') denote the Hölder dual exponents of an admissible pair.

・ロン ・回と ・ヨン・

Local Existence Global Existence Sufficient condition for the blow-up of the system Sharp thresholds for N = 2Ground State The Effect of the External Driven Field

Local Existence

Let $\varphi := (\varphi_1, \varphi_2) \in \Sigma(\mathbb{R}^N)$, then there exists a unique, maximal solution $\Psi \in \mathcal{C}([0, T_{max}), \Sigma(\mathbb{R}^N))$ of (1). The blow-up alternative holds true, i.e. $T_{max} < \infty$ if and only if

 $\|\Psi(t)\|_{H^1} o \infty$

as $t \to T^-_{max}$. Moreover for any admissible pair (q, r), we have

$$\Psi, \nabla \Psi, |\cdot|\Psi \in L^q((0, T_{max}); L^r(\mathbb{R}^N)).$$

・ロン ・回と ・ヨン・

Local Existence Global Existence Sufficient condition for the blow-up of the system Sharp thresholds for N = 2Ground State The Effect of the External Driven Field

Conserved quantities

Total mass:

$$M(t) = M_1(t) + M_2(t) = \int_{\mathbb{R}^N} |\psi_1(x,t)|^2 dx + \int_{\mathbb{R}^N} |\psi_2(x,t)|^2 dx$$

Total energy:

$$E(t) = \int_{\mathbb{R}^{N}} \left[\sum_{j=1}^{2} \left(\frac{1}{2} |\nabla \psi_{j}|^{2} + \frac{\gamma^{2}}{2} |x|^{2} |\psi_{j}|^{2} + \frac{\beta_{jj}}{2} |\psi_{j}|^{4} \right) + \beta_{12} |\psi_{1}|^{2} |\psi_{2}|^{2} + 2\lambda \Re(\psi_{1}^{*}\psi_{2}) \right] (x, t) dx,$$

M(t) = M(0) and E(t) = E(0) for all $t \ge 0$.

・ロン ・回と ・ヨン ・ヨン

æ

Local Existence Global Existence Sufficient condition for the blow-up of the system Sharp thresholds for N = 2Ground State The Effect of the External Driven Field

Global Existence I

Theorem

Let $N \leq 3$ and set $\beta = \max\{(-\beta_{11})^+, (-\beta_{22})^+\}$. Then there exists a global-in-time solution to in the following cases:

- all $\beta_{ij} \ge 0$ with i, j = 1, 2
- at least one $\beta_{ij} < 0$
 - 1. $\beta_{11}, \beta_{22} > 0$ and $\beta_{12}^2 < \beta_{11}\beta_{22}$
 - 2. N = 1
 - 3. N = 2 and
 - $M(0) < 2/(C_2|\beta_{12}|)$, if $\beta_{12} < 0$
 - $M(0) < 1/(C_2\beta)$, if min $\{\beta_{11}, \beta_{22}\} < 0$
 - $M(0) < 4/(C_2(2\beta + |\beta_{12}|))$, if min{ β_{11}, β_{22} } < 0 and $\beta_{12} < 0$

・吊り ・ヨト ・ヨト ・ヨ

Local Existence Global Existence Sufficient condition for the blow-up of the system Sharp thresholds for N = 2Ground State The Effect of the External Driven Field

Global Existence II

- 4. N = 3, $\|
 abla \Psi(0) \|_2^2 \le 2(E(0) + |\lambda| M(0))$, and
 - $M(0)(E(0) + |\lambda|M(0)) < \frac{8}{27C_2^2\beta_{12}^2}$, if $\beta_{12} < 0$
 - $M(0)(E(0) + |\lambda|M(0)) < \frac{2}{27C_3^2\beta^2}$, if min $\{\beta_{11}, \beta_{22}\} < 0$
 - $M(0)(E(0) + |\lambda|M(0)) < \frac{8}{27C_3^2(2\beta + |\beta_{12}|)^2}$, if $\min\{\beta_{11}, \beta_{22}\} < 0$ and $\beta_{12} < 0$

where C_N is the best constant in the Gagliardo-Nirenberg inequality:

$$\|\Psi\|_4^4 \leq C_N \|\nabla\Psi\|_2^N \|\Psi\|_2^{4-N} \quad \Psi \in H^1(\mathbb{R}^N)$$

Math. Models Methods Appl. Sci. (2013) A.Jüngel, R.W.

イロン イヨン イヨン イヨン

Local Existence Global Existence Sufficient condition for the blow-up of the system Sharp thresholds for N = 2Ground State The Effect of the External Driven Field

Blow-up of the system I

Theorem

Let $\varphi := (\varphi_1, \varphi_2) \in \Sigma(\mathbb{R}^N)$ and denote by $I(t) := \int_{\mathbb{R}^N} |x|^2 (|\psi_1|^2 + |\psi_2|^2) dx$. If one of the conditions

$$E(0) + |\lambda|M(0) < \frac{\gamma^2}{2}I(0), \quad or$$

 $I'(0) < 0, \quad E(0) + |\lambda|M(0) < -\frac{\gamma}{2}I'(0)$

is satisfied, the solution $\Psi = (\psi_1, \psi_2)$ to the system blows up at time $t^* \leq \pi/(2\gamma)$ or $t^* \leq \pi/(4\gamma)$, respectively, i.e.

 $\lim_{t \to t^*} \|\nabla \Psi\|_2 = +\infty,$ Rada M. Weishäupl Two-component NLS system with linear coupling

Local Existence Global Existence Sufficient condition for the blow-up of the system Sharp thresholds for N = 2Ground State The Effect of the External Driven Field

Blow-up of the system II

if the additional conditions on N are fulfilled- in the (mass) critical or super critical case:

1.
$$N = 2$$
 and at least one $\beta_{ij} < 0$, with $i, j = 1, 2$

2.
$$N = 3 \ \beta_{11} < 0, \beta_{22} < 0; \text{ if } \beta_{12} > 0 \text{ we should have additionally } \beta_{12} \le \sqrt{|\beta_{11}\beta_{22}|}$$

Math. Models Methods Appl. Sci. (2013) A.Jüngel, R.W.

イロン 不同と 不同と 不同と

Local Existence Global Existence Sufficient condition for the blow-up of the system Sharp thresholds for N = 2Ground State The Effect of the External Driven Field

Sharp threshold for N = 2

In *Phys. Lett. A 374 (2010) 2133–2136*, Zhongxue and Zuhan showed that for $\beta_{ij} < 0$ for i, j = 1, 2 and for $|\beta_{12}| < \sqrt{|\beta_{11}\beta_{22}|}$ the system:

$$\Delta v_1 - v_1 - (\beta_{11}|v_1|^2 + \beta_{12}|v_2|^2)v_1 = 0$$

$$\Delta v_2 - v_2 - (\beta_{12}|v_1|^2 + \beta_{22}|v_2|^2)v_2 = 0$$

has a ground state solution $V := (v_1, v_2)$. All v_i , i = 1, 2 must be positive, radially symmetric and strictly decreasing.

・ロン ・回と ・ヨン ・ヨン

Local Existence Global Existence Sufficient condition for the blow-up of the system Sharp thresholds for N = 2Ground State The Effect of the External Driven Field

Sharp threshold for N = 2

If
$$(\varphi_1, \varphi_2) \in \Sigma(\mathbb{R}^2)$$
 (remember $M(0) = \|\varphi_1\|_2^2 + \|\varphi_2\|_2^2$) and
 $M(0) < \frac{1}{2} \|V\|_2^2$

then the corresponding solution $\Psi = (\psi_1, \psi_2)$ exists globally in time.

At the same time, for arbitrary positive μ and complex c satisfying $|c| \geq \sqrt{\frac{1+\lambda^2}{2}}$ if we take initial data $\varphi_1 = c\mu v_1(\mu x)$ and $\varphi_2 = c\mu v_2(\mu x)$, then

$$M(0) \geq \frac{1}{2} \|V\|_2^2,$$

and the corresponding solution $\Psi = (\psi_1, \psi_2)$ blows up in finite time.

Local Existence

In East Asian J. Appl. Math. 1, no.1 (2011), 49-81 W. Bao and Y. Cai showed existence of the ground state $(\phi_1^g, \phi_2^g)^T$ if at least one of the conditions holds:

▶
$$N = 2$$
 and $\beta_{11} \ge -1/C_2$, $\beta_{22} \ge -1/C_2$,
 $\beta_{12} \ge -1/C_2 - \sqrt{1/C_2 + \beta_{11}}\sqrt{1/C_2 + \beta_{22}}$
▶ $N = 3$ either all $\beta_{ij} \ge 0$, or $\beta_{11} \ge 0$ and $\beta_{12}^2 \le \beta_{11}\beta_{22}$
n addition $(e^{i\theta_1}|\phi_1^g|, e^{i\theta_2}|\phi_2^g|)$, with $\theta_1 - \theta_2 = \pi$ for $\lambda > 0$ and
 $\theta_1 - \theta_2 = 0$ for $\lambda < 0$, respectively. Furthermore if $\beta_{11} \ge 0$ and
 $\beta_{12}^2 \le \beta_{11}\beta_{22}$, and one of the parameters λ, γ are nonzero, then
the ground state is $(|\phi_1^g|, -sign(\lambda)|\phi_2^g|)^T$ is unique.

イロン イヨン イヨン イヨン

2

Example: one focusing, one defocusing nonlinearity

Let $\beta_{11} < 0$ and $\beta_{22}, \beta_{12} \ge 0$ and N = 2. If the initial mass is not smaller than the critical mass $M(0) < 1/(C_2|\beta_{11}|)$, and the sufficient condition for blow-up $E(0) + |\lambda|M(0) < \frac{\gamma^2}{2}I(0)$ is not satisfied, we cannot say anything on the long time behavior of the system

$$i\partial_t \psi_1 = -\frac{1}{2} \Delta \psi_1 + \frac{\gamma^2}{2} |x|^2 \psi_1 - |\psi_1|^2 \psi_1 + \lambda \psi_2$$

$$i\partial_t \psi_2 = -\frac{1}{2} \Delta \psi_2 + \frac{\gamma^2}{2} |x|^2 \psi_2 + |\psi_2|^2 \psi_2 + \lambda \psi_1$$

$$\psi_1(x,0) = \varphi_1(x), \quad \psi_2(x,0) = \varphi_2(x)$$

Numerical simulations suggests that the system may blow-up or "exist globally" depending on λ .

Local Existence Global Existence Sufficient condition for the blow-up of the system Sharp thresholds for N = 2Ground State **The Effect of the External Driven Field**

The effect of the external driven field

Remember:

$$M_1(t) = \int_{\mathbb{R}^N} |\psi_1(x,t)|^2 dx, \quad M_2(t) = \int_{\mathbb{R}^N} |\psi_2(x,t)|^2 dx.$$

The total mass equals $M = M_1 + M_2$ is conserved. We also define

$$M_{12}(t) = \Im \int_{\mathbb{R}^N} \psi_1(x,t) \psi_2^*(x,t) dx,$$

Lemma

$$\begin{split} M_2 \ \text{and} \ M_{12} \ \text{satisfy the following differential equations:} \\ \partial_t M_2 &= -2\lambda M_{12}, \quad \partial_t M_{12} = \lambda M(0) - 2\lambda M_2 - Q(t), \quad t > 0, \text{ where} \\ Q(t) &= \Re \int_{\mathbb{R}^N} \psi_1 \psi_2^* \big(\beta_{11} |\psi_1|^2 - \beta_{22} |\psi_2|^2 - \beta_{12} (|\psi_1|^2 - |\psi_2|^2) \big)(x, t) dx. \end{split}$$

The functions $M_2(t)$ and $M_{12}(t)$ can be computed explicitly from the ODE system. Then $M_1(t) = -M_2(t) + M(0)$. The solution reads as

$$\begin{split} M_1(t) &= -\sin(2\lambda t) M_{12}(0) + \cos(2\lambda t) M_1(0) + \frac{1}{2}(1-\cos(2\lambda t)) M(0) \\ &+ \int_0^t \sin(2\lambda (t-s)) Q(s) ds, \\ M_2(t) &= \sin(2\lambda t) M_{12}(0) + \cos(2\lambda t) M_2(0) + \frac{1}{2}(1-\cos(2\lambda t)) M(0) \\ &- \int_0^t \sin(2\lambda (t-s)) Q(s) ds. \end{split}$$

 \rightarrow the components exchange their mass periodically. In the special case $\beta_{11} = \beta_{22} = \beta_{12}$, this exchange occurs actually with the frequency 2λ .

・ロト ・回ト ・ヨト ・ヨト

Main result Sketch of the Proof Properties of the Limiting System

The Transformed System

We first perform the following transformation:

$$\begin{aligned} \phi_1(x,t) &= \frac{\exp{(i\lambda t)}}{\sqrt{2}} (\psi_1(x,t) + \psi_2(x,t)) \\ \phi_2(x,t) &= \frac{\exp{(-i\lambda t)}}{\sqrt{2}} (\psi_1(x,t) - \psi_2(x,t)) \end{aligned}$$

Let us denote by $H:=-rac{1}{2}\Delta+rac{\gamma^2}{2}|x|^2$

イロン イヨン イヨン イヨン

3

Main result Sketch of the Proof Properties of the Limiting System

(2)

Nonautonomous System

We obtain the non-autonomous system:

$$i\partial_t \phi_1 = H\phi_1 + \sigma_1 |\phi_1|^2 \phi_1 + \sigma_2 |\phi_2|^2 \phi_1 + \sigma_3(\lambda t) |\phi_1|^2 \phi_2 + \sigma_4(\lambda t) |\phi_2|^2 \phi_2 + \sigma_5(\lambda t) \phi_1^* \phi_2^2 + \sigma_6(\lambda t) \phi_1^2 \phi_2^*$$

$$\begin{split} i\partial_t \phi_2 &= H\phi_2 + \sigma_1 |\phi_2|^2 \phi_2 + \sigma_2 |\phi_1|^2 \phi_2 + \sigma_3^*(\lambda t) |\phi_2|^2 \phi_1 \\ &+ \sigma_4^*(\lambda t) |\phi_1|^2 \phi_1 + \sigma_5^*(\lambda t) \phi_2^* \phi_1^2 + \sigma_6^*(\lambda t) \phi_2^2 \phi_1^* \end{split}$$

$$\phi_1(x,0)=\varphi_1(x)+\varphi_2(x); \phi_2(x,0)=\varphi_1(x)-\varphi_2(x).$$

For the single nonlinear Schrödinger equation with a periodic coefficient there is a rigorous result by Cazenave and Scialom *Revista Matématica Complutense*, *23*, *2*(2010), *321–339*

Main result Sketch of the Proof Properties of the Limiting System

With the coefficients:

$$\begin{split} \sigma_{1} &= \frac{\beta_{11} + 2\beta_{12} + \beta_{22}}{4}; \\ \sigma_{2} &= \frac{\beta_{11} + \beta_{22}}{2}; \\ \sigma_{3}(\lambda t) &= \frac{\beta_{11} - \beta_{22}}{2} \exp{(2i\lambda t)}; \\ \sigma_{4}(\lambda t) &= \frac{\beta_{11} - \beta_{22}}{4} \exp{(2i\lambda t)}; \\ \sigma_{5}(\lambda t) &= \frac{\beta_{11} - 2\beta_{12} + \beta_{22}}{4} \exp{(4i\lambda t)}; \\ \sigma_{6}(\lambda t) &= \frac{\beta_{11} - \beta_{22}}{4} \exp{(-2i\lambda t)}. \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Main result Sketch of the Proof Properties of the Limiting System

Remark Note that for $\beta_{11} = \beta_{22} = \beta_{12} = \beta$ the system (2) does not depend on λ :

$$\begin{split} i\partial_t \phi_1 &= -\frac{1}{2} \Delta \phi_1 + \frac{\gamma^2}{2} |x|^2 \phi_1 + \beta |\phi_1|^2 \phi_1 + \beta |\phi_2|^2 \phi_1 \\ i\partial_t \phi_2 &= -\frac{1}{2} \Delta \phi_2 + \frac{\gamma^2}{2} |x|^2 \phi_2 + \beta |\phi_2|^2 \phi_2 + \beta |\phi_1|^2 \phi_2 \end{split}$$

イロン イロン イヨン イヨン 三日

Main result Sketch of the Proof Properties of the Limiting System

Formal Limit

We expect the coefficients of the nonlinearities to go to their average in time:

$$ar{\sigma_j}=rac{1}{2\pi}\int_0^{2\pi}\sigma_j(t)dt=0 \quad ext{ for } j=3,4\dots 6.$$

and the solution (ϕ_1, ϕ_2) to converges locally in time for $|\lambda| \to \infty$ to the solution $U = (u_1, u_2)$ of:

$$\begin{split} i\partial_t u_1 &= -\frac{1}{2}\Delta u_1 + \frac{\gamma^2}{2}|x|^2 u_1 + \sigma_1|u_1|^2 u_1 + \sigma_2|u_2|^2 u_1 \\ i\partial_t u_2 &= -\frac{1}{2}\Delta u_2 + \frac{\gamma^2}{2}|x|^2 u_2 + \sigma_1|u_2|^2 u_2 + \sigma_2|u_1|^2 u_2 \\ &u_1(x,0) = \varphi_1(x) + \varphi_2(x); \quad u_2(x,0) = \varphi_1(x) - \varphi_2(x) \end{split}$$

・ロト ・回ト ・ヨト ・ヨト

3

Main result Sketch of the Proof Properties of the Limiting System

Main Result I

Theorem

Let $\varphi := (\varphi_1, \varphi_2) \in \Sigma(\mathbb{R}^N)$ be a fixed initial value. Given $\lambda \in \mathbb{R}$, let Φ^{λ} denote the maximal solution of (2). Let U be the maximal solution of

$$\begin{aligned} i\partial_t u_1 &= -\frac{1}{2}\Delta u_1 + \frac{\gamma^2}{2}|x|^2 u_1 + \sigma_1|u_1|^2 u_1 + \sigma_2|u_2|^2 u_1 \\ i\partial_t u_2 &= -\frac{1}{2}\Delta u_2 + \frac{\gamma^2}{2}|x|^2 u_2 + \sigma_1|u_2|^2 u_2 + \sigma_2|u_1|^2 u_2 \\ &u_1(x,0) = \varphi_1(x) + \varphi_2(x); \quad u_2(x,0) = \varphi_1(x) - \varphi_2(x) \end{aligned}$$

defined on the maximal interval $[0, S_{max})$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Э

Main result Sketch of the Proof Properties of the Limiting System

Main Result II

Given any 0 < T < S_{max} the solution Φ^λ exists on [0, T] provided that |λ| is sufficiently large.

► And we have convergence $\begin{pmatrix} \Phi^{\lambda} \\ \nabla \Phi^{\lambda} \\ |\cdot|\Phi^{\lambda} \end{pmatrix} \rightarrow \begin{pmatrix} U \\ \nabla U \\ |\cdot|U \end{pmatrix}$ in $L^{q}((0,T), L^{r}(\mathbb{R}^{N}))$ as $|\lambda| \rightarrow \infty$, for all admissible pairs (q,r)and all $0 < T < S_{max}$. In particular, we have

$$\Phi^{\lambda} \to U \text{ in } \mathcal{C}([0, T]; H^1(\mathbb{R}^N)) \quad \forall 0 < T < S_{max}.$$

イロト イヨト イヨト イヨト

Main result Sketch of the Proof Properties of the Limiting System

Main Result III

Where

$$\sigma_1 = \frac{\beta_{11} + 2\beta_{12} + \beta_{22}}{4},$$
$$\sigma_2 = \frac{\beta_{11} + \beta_{22}}{2}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

.

- With the standard techniques it follows that the Cauchy problems for Ψ, Φ^λ, U are locally well-posed.
- The same result stated in the above Theorem for solution Ψ holds true also for solutions Φ^λ of the non-autonomous system.
- ▶ We can easily check that $|\psi_1|^2 + |\psi_2|^2 = |\phi_1|^2 + |\phi_2|^2$ and consequently also

$$\|\Psi(t)\|_{\Sigma(\mathbb{R}^N)} = \|\Phi^{\lambda}(t)\|_{\Sigma(\mathbb{R}^N)}$$

(ロ) (同) (E) (E) (E)

Main result Sketch of the Proof Properties of the Limiting System

Preliminary Results

We first need uniform in λ bounds on the H^1 -norm of the solution: Proposition

Given M > 0, there exists a $\delta = \delta(M) > 0$ such that for any $\varphi := (\varphi_1, \varphi_2) \in \Sigma(\mathbb{R}^N)$, with $\|\varphi\|_{\Sigma(\mathbb{R}^N)} \leq M$, there exists a unique solution $\Psi \in \mathcal{C}((0, \delta); \Sigma(\mathbb{R}^N))$ for the system. In addition,

$$\|\Psi\|_{L^{\infty}((0,\delta);\Sigma(\mathbb{R}^N))} \leq 2\|\phi\|_{\Sigma(\mathbb{R}^N)}.$$

イロト イポト イヨト イヨト

Lemma

For any $\varphi \in \Sigma(\mathbb{R}^N)$ let Φ^{λ} be the maximal solution of the non-autonomous system. Let U be the maximal solution of the limiting system, defined on $[0, S_{max})$. Let $0 < l < S_{max}$ and assume that Φ^{λ} exists on [0, I] and that

$$\displaystyle \inf_{\substack{|\lambda| o\infty}} \sup \|\Phi^\lambda\|_{L^\infty((0,l);H^1(\mathbb{R}^N))} <\infty$$

Then we have

$$\lim_{|\lambda|\to\infty} \| \begin{pmatrix} 1\\ \nabla\\ |\cdot| \end{pmatrix} (\Phi^{\lambda} - U) \|_{L^q((0,l);L^r(\mathbb{R}^N))} = 0$$

for any admissible pairs (q, r). In particular $\Phi^{\lambda} \to U$ in $L^{\infty}((0, I); H^{1}(\mathbb{R}^{N}))$.

- Let us fix $0 < T < S_{max}$ and $M := \|U\|_{L^{\infty}((0,T);H^{1}(\mathbb{R}^{N}))}$
- Φ^λ exists in [0, δ] for all λ and furthermore sup_{λ∈ℝ} ||Φ^λ||_{L∞((0,δ);H¹(ℝ^N))} ≤ 2||φ||_Σ.
- let $0 < l \leq T$ (we can always choose $l = \delta$) be such that
 - Φ^{λ} exists in [0, I], and
 - ► that we have $\limsup_{|\lambda|\to\infty} \|\Phi^{\lambda}\|_{L^{\infty}((0,l);H^{1}(\mathbb{R}^{N}))} < \infty$
- with the Lemma we have convergence $\Phi^{\lambda} \to U$ in $L^q((0, l); L^r(\mathbb{R}^N))$ for all admissible pairs (q, r).
- ► In particular $\lim_{|\lambda|\to\infty} \|\Phi^{\lambda}(I) U(I)\|_{H^1(\mathbb{R}^N)} = 0.$ $\Rightarrow \sup_{|\lambda|\geq\Lambda} \|\Phi^{\lambda}(I)\|_{H^1(\mathbb{R}^N)} \leq M \text{ for } \Lambda > 0 \text{ sufficiently large}$
- We can thus repeat the argument, starting at time $t = 1 \dots$
- ► Thus we repeat this argument to prove the result in the whole time interval [0, T].

Main result Sketch of the Proof Properties of the Limiting System

Properties of the Limiting System

there are three conserved quantities: the mass of each component and the energy:

$$\begin{split} \|u_1(t)\|_2 &= \|u_1(0)\|_2, \\ \|u_2(t)\|_2 &= \|u_2(0)\|_2, \\ \tilde{E}(t) &= \tilde{E}(0); \end{split}$$

where

$$egin{array}{rcl} ilde{\mathcal{E}}(t) &:=& rac{1}{2} \int_{\mathbb{R}^N} \sum_{j=1}^2 \Big[|
abla u_j|^2 + \gamma^2 |x|^2 |u_j|^2 + \sigma_1 |u_j|^4 \ &+ \sigma_2 |u_1|^2 |u_2|^2 \Big](x,t) dx, \end{array}$$

イロト イポト イヨト イヨト

Global Existence of the limiting system I

Let $U = (u_1, u_2)$ be the solution of the limiting system. Then there exists a global-in-time solution to in the following cases:

- $\sigma_1, \sigma_2 \ge 0$
- ▶ at least one $\sigma_i < 0$
 - 1. $\sigma_1 > 0$ and $|\sigma_2| < \sigma_1$ 2. N = 1
 - 3. N = 2 and

•
$$M(0) < \frac{2}{C_2|\sigma_2|}$$
, if $\sigma_2 < 0$
• $M(0) < \frac{1}{C_2|\sigma_1|}$, if $\sigma_1 < 0$
• $M(0) < \frac{4}{C_2(2|\sigma_1|+|\sigma_2|)}$, if $\sigma_1 < 0$ and $\sigma_2 < 0$

4. N = 3, $\|\nabla U(0)\|_2^2 \le 2\tilde{E}(0)$, and

イロト イポト イヨト イヨト

Main result Sketch of the Proof Properties of the Limiting System

Global Existence of the limiting system II

$$\begin{array}{l} \bullet \quad M(0)\tilde{E}(0) < \frac{8}{27C_3^2\sigma_2^2}, \mbox{ if } \sigma_2 < 0 \\ \bullet \quad M(0)\tilde{E}(0) < \frac{2}{27C_3^2\sigma_1^2}, \mbox{ if } \sigma_1 < 0 \\ \bullet \quad M(0)\tilde{E}(0) < \frac{8}{27C_3^2(2|\sigma_1|+|\sigma_2|)^2}, \mbox{ if } \sigma_1 < 0 \mbox{ and } \sigma_2 < 0 \end{array}$$

With this we have at least for large λ different parameter regimes, for which we expect global existence.

イロト イポト イヨト イヨト

3

Main result Sketch of the Proof Properties of the Limiting System

Example

Case: $\beta_{11} = -1$, $\beta_{22} = 1$, $\beta_{12} = 0$, thus we have:

$$i\partial_t \psi_1 = -\frac{1}{2} \Delta \psi_1 + \frac{\gamma^2}{2} |x|^2 \psi_1 - |\psi_1|^2 \psi_1 + \lambda \psi_2$$

$$i\partial_t \psi_2 = -\frac{1}{2} \Delta \psi_2 + \frac{\gamma^2}{2} |x|^2 \psi_2 + |\psi_2|^2 \psi_2 + \lambda \psi_1$$

$$\psi_1(x,0) = \varphi_1(x), \quad \psi_2(x,0) = \varphi_2(x)$$

Remember $\sigma_1 = \frac{\beta_{11}+2\beta_{12}+\beta_{22}}{4}$; $\sigma_2 = \frac{\beta_{11}+\beta_{22}}{2}$ It follows for the limiting system when $|\lambda| \to \infty$:

$$\begin{aligned} &i\partial_t u_1 \quad = -\frac{1}{2}\Delta u_1 + \frac{\gamma^2}{2}|x|^2 u_1 \\ &i\partial_t u_2 \quad = -\frac{1}{2}\Delta u_2 + \frac{\gamma^2}{2}|x|^2 u_2 \end{aligned}$$

イロン 不同と 不同と 不同と

3

Main result Sketch of the Proof Properties of the Limiting System

Alternative Transformation

We perform following transformation:

$$\phi_1 = \cos(\lambda t)\psi_1 + i\sin(\lambda t)\psi_2$$

$$\phi_2 = i\sin(\lambda t)\psi_1 + \cos(\lambda t)\psi_2$$

$$\begin{split} i\partial_t \phi_1 &= -\frac{1}{2} \Delta \phi_1 + \frac{\gamma^2}{2} |x|^2 \phi_1 + f_1(\lambda t) |\phi_1|^2 \phi_1 + f_3(\lambda t) |\phi_2|^2 \phi_1 \\ &+ i f_2(\lambda t) |\phi_1|^2 \phi_2 + i f_4(\lambda t) |\phi_2|^2 \phi_2 \\ &- 2 f_2(\lambda t) \Im \left(\phi_1^* \phi_2\right) \phi_1 - i f_5(\lambda t) \Im \left(\phi_1^* \phi_2\right) \phi_2 \\ i\partial_t \phi_2 &= -\frac{1}{2} \Delta \phi_2 + \frac{\gamma^2}{2} |x|^2 \phi_2 + f_6(\lambda t) |\phi_2|^2 \phi_2 + f_3(\lambda t) |\phi_1|^2 \phi_2 \\ &- i f_2(\lambda t) |\phi_1|^2 \phi_1 - i f_4(\lambda t) |\phi_2|^2 \phi_1 \\ &- 2 f_4(\lambda t) \Im \left(\phi_1^* \phi_2\right) \phi_2 + i f_5(\lambda t) \Im \left(\phi_1^* \phi_2\right) \phi_1 \end{split}$$

The coefficients depend on λ and t.

$$f_{1}(\lambda t) = \beta_{11} \cos^{4}(\lambda t) + \beta_{22} \sin^{4}(\lambda t) + 2\beta_{12} \cos^{2}(\lambda t) \sin^{2}(\lambda t)$$

$$f_{6}(\lambda t) = \beta_{11} \sin^{4}(\lambda t) + \beta_{22} \cos^{4}(\lambda t) + 2\beta_{12} \cos^{2}(\lambda t) \sin^{2}(\lambda t)$$

$$f_{2}(\lambda t) = \sin(\lambda t) \cos(\lambda t) \left[-\beta_{11} \cos^{2}(\lambda t) + \beta_{22} \sin^{2}(\lambda t) + \beta_{12} \cos(2\lambda t)\right]$$

$$f_{3}(\lambda t) = (\beta_{11} + \beta_{22}) \cos^{2}(\lambda t) \sin^{2}(\lambda t) + \beta_{12} (\cos^{4}(\lambda t) + \sin^{4}(\lambda t))$$

$$f_{4}(\lambda t) = \sin(\lambda t) \cos(\lambda t) \left[-\beta_{11} \sin^{2}(\lambda t) + \beta_{22} \cos^{2}(\lambda t) - \beta_{12} \cos(2\lambda t)\right]$$

$$f_{5}(\lambda t) = 2 \sin^{2}(\lambda t) \cos^{2}(\lambda t) \left[\beta_{11} + \beta_{22} - 2\beta_{12}\right]$$

イロン イボン イヨン イヨン 三日

Main result Sketch of the Proof Properties of the Limiting System

Formal Limit

$$i\partial_t u_1 = -\frac{1}{2}\Delta u_1 + \frac{\gamma^2}{2}|x|^2 u_1 + \sigma_1|u_1|^2 u_1 + \sigma_3|u_2|^2 u_1 -i\sigma_5\Im(u_1^*u_2)u_2 i\partial_t u_2 = -\frac{1}{2}\Delta u_2 + \frac{\gamma^2}{2}|x|^2 u_2 + \sigma_1|u_2|^2 u_2 + \sigma_3|u_1|^2 u_2 +i\sigma_5\Im(u_1^*u_2)u_1$$

with initial data $u_1(x,0) = \varphi_1(x)$ and $u_2(x,0) = \varphi_2(x)$ and

$$\sigma_{1} = \frac{3\beta_{11} + 3\beta_{22} + 2\beta_{12}}{8} \quad \sigma_{3} = \frac{\beta_{11} + \beta_{22} + 6\beta_{12}}{8}$$
$$\sigma_{5} = \frac{\beta_{11} + \beta_{22} - 2\beta_{12}}{4}$$

イロン イボン イヨン イヨン 三日

Main result Sketch of the Proof Properties of the Limiting System

This system has three conserved quantities:

$$\begin{split} \tilde{\tilde{E}}(t) &= \int_{\mathbb{R}^{N}} \left[\sum_{j=1}^{2} \left(\frac{1}{2} |\nabla u_{j}|^{2} + \frac{\gamma^{2} |x|^{2}}{2} |u_{j}|^{2} + \frac{\sigma_{1}}{2} |u_{j}|^{4} \right) \\ &+ \sigma_{3} |u_{1}|^{2} |u_{2}|^{2} + \sigma_{5} \Im^{2} (u_{1}^{*} u_{2}) \right] (x, t) dx \\ M(t) &= \int_{\mathbb{R}^{N}} \left(||u_{1}|^{2} + |u_{2}|^{2} \right) (x, t) dx \\ R(t) &= \Re \int_{\mathbb{R}^{N}} (u_{1} u_{2}^{*}) (x, t) dx \end{split}$$

- we can show the same convergence results as before
- global existence is in the same parameter regions as before

イロト イポト イヨト イヨト

3

Main result Sketch of the Proof Properties of the Limiting System

Conclusion

- we discussed the global existence and the blow-up alternative of the system
- semi-explicit formula describing the mass evolution, indicating the role of the Rabi frequency λ.
- \blacktriangleright we performed asymptotics for $|\lambda| \rightarrow \infty$
- proved the convergence locally in time in appropriate Strichartz' spaces.
- show existence of the system on a time interval strictly smaller than the existence interval of the limiting system. ⇒
 We expect the system to behave like the limiting system for |λ| sufficiently large.

イロト イヨト イヨト イヨト

Main result Sketch of the Proof Properties of the Limiting System

Thank you for your attention!

イロン イボン イヨン イヨン 三日