# Some parabolic models for chemotaxis in 2D 

8th November 2004

Vincent Calvez
PhD thesis under the direction of Benoît Perthame and Philip K. Maini.

## Table des matières

1 The Patlak, Keller \& Segel model ..... 3
1.1 A priori estimates ..... 5
1.2 The energy of the system in the case of $\Omega$ bounded ..... 7
2 Model for angiogenesis ..... 9
3 The generalized Keller \& Segel model ..... 11
3.1 The first association ..... 15
3.2 What about $\int n \nabla c \cdot \nabla f^{\gamma}$ ? ..... 16
3.3 The second association ..... 18
3.4 Consequences of the homogeneity relations and conclusion ..... 19

## 1. The Patlak, Keller \& Segel model

The Keller \& Segel model for chemotaxis consists of two coupled parabolic equations:

- an advection-diffusion equation for the evolution of cell density $n(t, x)$,
- a reaction-diffusion equation for the evolution of chemical concentration $c(t, x)$.
Several variants of the following system have been studied

$$
\left\{\begin{array}{l}
\partial_{t} n+\nabla \cdot(-\nabla n+\chi n \nabla c)=0 \quad t \geq 0, x \in \Omega \subset \mathbb{R}^{2} \\
\Gamma \partial_{t} c-\Delta c=n-\alpha c
\end{array} .\right.
$$

Particularly the degenerate case under the assumption of high diffusion of chemical species [Jäger \& Luckhaus]

$$
\left\{\begin{array}{l}
\partial_{t} n+\nabla \cdot(-\nabla n+\chi n \nabla c)=0 \quad t \geq 0, x \in \Omega \\
-\Delta c=n-f n
\end{array} .\right.
$$

The first task is to study whether or not solutions of these coupled equations blow-up (in finite time).
The main result is the following.
Theorem 1 There exists a constant $C^{*}$ such that if $\chi M<C^{*}$ then the system admits global in time solution.

At least two distinct approaches can be useful in order to prove this theorem.

One can derive a priori estimates based on the following computation

$$
\frac{d}{d t} \int \Phi(n) d x=\int-\Phi^{\prime \prime}(n)|\nabla n|^{2} d x+\chi \int n \psi(n) d x
$$

with $\psi^{\prime}(x)=x \Phi^{\prime \prime}(x)$
$\Phi(x)$ is a convex function growing faster than $x$ near infinity, typically $\Phi(x)=x \ln x$.
It is possible to estimate the balance between the two terms, corresponding respectively to diffusion and aggregation of cells, thanks to a Gagliardo-Nirenberg-Sobolev inequality

$$
\int n^{2} \leq \mathcal{C}_{\mathcal{G N S}} M \int|\nabla \sqrt{n}|^{2}
$$

If dimension $d=2$, the total mass of cells $M=\|n\|_{L^{1}}$ appears naturally from this inequality.

Consequently, the equi-integrability allows controls of the $L^{p}$ norms of the cell density $n$, by another computation with $\Phi(x)=(x-k)_{+}^{p}$.

$$
\begin{aligned}
& \frac{d}{d t} \int_{\Omega}(n-k)_{+}^{p}+C\left\{1-C \int_{\Omega}(n-k)_{+}\right\} \int_{\Omega}\left|\nabla(n-k)_{+}^{p / 2}\right|^{2} \\
& \quad \leq C k \int_{\Omega}(n-k)_{+}^{p}+C k^{2}\left(\int_{\Omega}(n-k)_{+}^{p}\right)^{1-1 /(p-1)}
\end{aligned}
$$

### 1.2. The energy of the system in the case of $\Omega$ bounded

There is an energy for the previous system

$$
\left\{\begin{aligned}
\partial_{t} n & =\nabla \cdot\{n \nabla(\ln n-\chi c)\} \quad t \geq 0, x \in \Omega \subset \mathbb{R}^{2} \\
-\Delta c & =n-f n
\end{aligned}\right.
$$

which is of the following type

$$
\mathcal{E}(t)=\int n \ln n-\frac{\chi}{2} \int n c, \quad \frac{d \mathcal{E}}{d t}=-\int n|\nabla(\ln n-\chi c)|^{2} \leq 0
$$

Introducing the stationnary states of the system, it is possible to show that $\int|\nabla c|^{2}$ remains bounded.
As a consequence so does $\int n \ln n$.

A Sobolev-type inequality is used in te critical case of the imbedding

$$
H^{1}(\Omega) \hookrightarrow L_{A}(\Omega)
$$

where $L_{A}$ is the Orlicz space associated to the convex function $A(s)=$ $\exp \left(s^{2}\right)$.

Lemma 1 (Trudinger \& Moser) If $u \in H^{1}(\Omega)$ and $\int u=0$ (Neumann Boundary Conditions ) then

$$
\int e^{u} \leq C \exp \left(\frac{1}{8 \pi} \int|\nabla u|^{2}\right)
$$

## 2. Model for angiogenesis

Another very studied model for cell movement is angiogenesis. In its simplest form, the system is

$$
\left\{\begin{aligned}
\partial_{t} n & =\Delta n-\nabla \cdot(n \chi(c) \nabla c) \quad t \geq 0, x \in \mathbb{R}^{2} \\
\partial_{t} c & =-n c
\end{aligned}\right.
$$

This system also admits an energy, given by

$$
\mathcal{E}(t)=\int n \ln n+\frac{1}{2} \int|\nabla \Phi(c)|^{2}, \quad \frac{d \mathcal{E}}{d t} \leq 0
$$

provided $\inf _{c \geq 0}\left\{\frac{c \chi^{\prime}}{\chi}+1\right\} \geq 0$; where $\Phi$ is defined by the differential equation

$$
\Phi^{\prime}(c)=\sqrt{\frac{\chi(c)}{c}}
$$

This estimation reveals that the family $\{n(t) \ln n(t)\}$ is equi-integrable.

Nevertheless, in order to control the $L^{p}$ norms of $n$ as in the previous section, another strategy has to be stated. For instance, it is possible to transform the first equation into a divergence form

$$
\partial_{t}\left(\frac{n}{\phi(c)}\right)=\frac{1}{\phi(c)} \nabla \cdot\left\{\phi(c) \nabla\left(\frac{n}{\phi(c)}\right)\right\}+\left(\frac{n}{\phi(c)}\right)^{2} \phi(c) \chi(c) c,
$$

where $\phi(c)$ is defined by another differential equation

$$
\phi^{\prime}(c)=\phi(c) \chi(c) .
$$

It is then possible to reproduce and adapt computations of $\frac{d}{d t} \int f\left(\frac{n}{\phi(c)}\right) \phi(c)$ and to apply similarly the Gagliardo-Nirenberg-Sobolev inequalities in the case of $f(x)=(x-k)_{+}^{p}$.

## 3. The generalized Keller \& Segel model

To further studying different chemotactic models, we have chosen a generalization of the Keller \& Segel model.
It has been proposed by Tyson \& Murray for the modelisation of spatial organisation in bacterial population.

$$
\left\{\begin{array}{rl}
\partial_{t} n & =\Delta n-\nabla \cdot(n \chi \nabla c) \quad t \geq 0, x \in \mathbb{R}^{2} \\
-\Delta c & =n f \\
\partial_{t} f & =-n f
\end{array} .\right.
$$

Assumption of an additional chemical species : the stimulant $f$ is necessary to produce the chemoattractant $c$.
And $f$ is only consumed by the cells.
It renders an account of short and long range effects because of the diffusion of the chemical $c$, contrary to the local effect of the stimulant $f$.

Unfortunately, we know no energy structure for this system of three coupled equations, which makes it dramatically different from the previous ones.

We present here a first draft to understand the behavior of this system.
Indeed, if we simply reproduce the first method presented above, based on the a priori estimation

$$
\frac{d}{d t} \int n \ln n=-4 \int|\nabla \sqrt{n}|^{2}+\chi\|f\|_{\infty} \int n^{2},
$$

we can't hope gaining anything but the condition $\chi\|f\|_{\infty} M<\mathcal{C}^{*}$.
This condition is not satisfying : it doesn't bring anything new by comparison to the classical Keller \& Segel model ; and it doesn't capture the feature of the additional equation $\partial_{t} f=-n f$.

Another approach consists of finding a combinaison of the following type

$$
\mathcal{W}(t)=\int n \ln n+\beta \int n f^{\gamma}+\alpha \frac{1}{2} \int\left|\nabla f^{\delta}\right|^{2},
$$

which is decreasing for well-chosen values of $\alpha$ and $\beta$, and under some conditions involving $\chi\|f\|_{\infty}$ and $M$. We first compute $\frac{d}{d t} \mathcal{W}$

$$
\begin{aligned}
\frac{d}{d t} \int n \ln n & =-4 \int|\nabla \sqrt{n}|^{2}+\chi \int n^{2} f, \\
\beta \frac{d}{d t} \int n f^{\gamma} & =-\beta \int \nabla n \cdot \nabla f^{\gamma}+\chi \beta \int n \nabla c \cdot \nabla f^{\gamma}-\gamma \beta \int n^{2} f^{\gamma}, \\
\alpha \frac{d}{d t} \frac{1}{2} \int\left|\nabla f^{\delta}\right|^{2} & =-\frac{\delta}{2} \alpha \int \nabla n \cdot \nabla f^{2 \delta}-\delta \alpha \int n\left|\nabla f^{\delta}\right|^{2} .
\end{aligned}
$$

In order to eliminate the bad contribution of the no-sign terms and the positive one, we'll associate them with negative ones in two ways. The first group includes

$$
-4 \int|\nabla \sqrt{n}|^{2}-\left\{\begin{array}{c}
\beta \int \nabla n \cdot \nabla f^{\gamma} \\
-\frac{\delta}{2} \alpha \int \nabla n \cdot \nabla f^{2 \delta}
\end{array}\right\}-\delta \alpha \int n\left|\nabla f^{\delta}\right|^{2},
$$

and the second one includes

$$
\chi \int n^{2} f-\gamma \beta \int n^{2} f^{\gamma} .
$$

The unfriendly term $\chi \beta \int n \nabla c \cdot \nabla f^{\gamma}$ plays an ambivalent role in this description.

### 3.1. The first association

We force a remarkable square to appear thanks to the extrem terms. One can easily be convinced that we have to set $\delta \leq \gamma$.
Under this assumption, we are able to dominate

$$
-4 \int|\nabla \sqrt{n}|^{2}+2 \beta \frac{\gamma}{\delta}\|f\|_{\infty}^{\gamma-\delta} \int|\nabla \sqrt{n}| \cdot\left|\sqrt{n} \nabla f^{\delta}\right|-\delta \alpha \int n\left|\nabla f^{\delta}\right|^{2}
$$

A first condition appears for the homogeneity of $\alpha$ and $\beta$, for this expression to be non-positive.

$$
\left(\beta\|f\|_{\infty}^{\gamma-\delta} \frac{\gamma}{\delta}\right)^{2} \equiv \alpha \delta
$$

The same computation arises for the other term of the same type $-\frac{\delta}{2} \alpha \int \nabla n$. $\nabla f^{2 \delta}$ and we get another homogeneity condition

$$
\delta \alpha\|f\|_{\infty}^{2 \delta} \equiv 1
$$

3.2. What about $\int n \nabla c \cdot \nabla f^{\gamma}$ ?

We can combine this no-sign term in a general way

$$
\begin{aligned}
\int n\left|\nabla c \cdot \nabla f^{\gamma}\right| & =\frac{\gamma}{\gamma-\xi} \int n f^{\xi}\left|\nabla c \cdot \nabla f^{\gamma-\xi}\right| \\
& \leq\left(\frac{\gamma}{\gamma-\xi}\right)^{2} \frac{K}{2} \int n\left|\nabla f^{\gamma-\xi}\right|^{2}+\frac{1}{2 K} \int n f^{2 \xi}|\nabla c|^{2}
\end{aligned}
$$

with a homogeneity constant $K$ which has to be determined.
We associate the first r.h.s term with $-\delta \alpha \int n\left|\nabla f^{\delta}\right|^{2}$. We set $\delta \leq \gamma-\xi$ for this purpose.
It follows

$$
\chi \frac{K}{2} \beta\left(\frac{\gamma}{\delta}\right)^{2}\|f\|_{\infty}^{2(\gamma-\xi-\delta)} \int n\left|\nabla f^{\delta}\right|^{2}-\alpha \delta \int n\left|\nabla f^{\delta}\right|^{2}
$$

and we get an additional homogeneity condition for $K$

$$
\chi \beta\|f\|_{\infty}^{2(\gamma-\xi-\delta)}\left(\frac{\gamma}{\delta}\right)^{2} K \equiv \alpha \delta
$$

The second r.h.s term will be eliminated thanks to a combination of Sobolev and Gagliardo-Nirenberg-Sobolev inequalities

$$
\begin{gathered}
\|\nabla c\|_{4}^{4} \leq \mathcal{C}_{\mathcal{S}}\|n f\|_{4 / 3}^{4} \\
\left(\int n^{4 / 3}\right)^{3} \leq \mathcal{C}_{\mathcal{G N S}} M^{3} \int|\nabla \sqrt{n}|^{2}
\end{gathered}
$$

So that

$$
\int n f^{2 \xi}|\nabla c|^{2} \leq \frac{L}{2} \int n^{2} f^{\omega}+\frac{1}{2 L} \int f^{\theta}|\nabla c|^{4},
$$

with the relation $\omega+\theta=4 \xi$, and also

$$
\int f^{\theta}|\nabla c|^{4} \leq \mathcal{C}^{*}\|f\|_{\infty}^{4+\theta} M^{3} \int|\nabla \sqrt{n}|^{2}
$$

Finally we have to deal with the last remaining terms, namely $\int n^{2} f^{\omega}$ and $\int n^{2} f$.

In order to eliminate those two terms, we of course associate them with $\int n^{2} f^{\gamma}$. Only the case $\gamma \geq \max (1, \omega)$ is able to keep the homogeneity of the computations.
We use the following majoration which makes the distinction between high and low values of $f$

$$
X^{\omega} \leq \kappa^{-\omega} c_{\nu}+\kappa^{\gamma-\omega} X^{\gamma}, \quad \omega \nu=\gamma
$$

with the constant $E_{\nu}=c_{\nu}^{\nu-1}=\frac{(\nu-1)^{(\nu-1)}}{\nu^{\nu}}$.
For each term $\int n^{2} f^{\omega}$ and $\int n^{2} f$ we get two new terms involving $\int n^{2}$ and $\int n^{2} f^{\gamma}$.
We can use the first cited G.N.S. inequality to estimate $\int n^{2}$ : we have determinated all the homogeneity constants introduced

$$
\begin{gathered}
\chi \beta K^{-1} L^{-1}\|f\|_{\infty}^{\theta+4} M^{3} \equiv 1, \\
\chi\left(c_{\gamma} \chi M\right)^{\gamma-1} \equiv \gamma \beta, \\
\chi \beta K^{-1} L\left(\chi \beta K^{-1} L c_{\nu} M\right)^{\nu-1} \equiv \gamma \beta .
\end{gathered}
$$

### 3.4. Consequences of the homogeneity relations and conclusion

Using these six homogeneity conditions, we can eliminate all the intermediate parameters, and finally we get two different consequences of these relations

$$
E_{\gamma} \chi^{\gamma}\|f\|_{\infty}^{\gamma} M^{\gamma-1} \equiv \delta,
$$

and

$$
E_{\nu} \chi^{4 \nu}\|f\|_{\infty}^{4 \nu} M^{4 \nu-1} \equiv \delta .
$$

Consequently we assume $\gamma=4 \nu$ to unify these two relations, which forces $\gamma \geq 4$ and $\delta \leq \gamma-\xi \leq \gamma-\frac{1}{4}(\omega+\theta) \leq \gamma-1$.

- Jäger, W. et Luckhaus, S., On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. AMS 329, 819-824 (1992)
- Gajewski, H. et Zacharias, K., Global behaviour of a reaction-diffusion system modeling chemotaxis, Math. Nachr. 195, 77-114 (1998)
- Corrias, L., Perthame, B. et Zaag, H., Global solutions of some chemotaxis and angiogenesis systems in high space dimensions. Milano J. Math. (2004)
- Horstmann, D., From 1970 until present : the Keller-Segel model in chemotaxis and its consequences (2003)

