Kinetic models for chemotaxis FABIO A. C. C. CHALUB

Centro de Matemática e Aplicações Fundamentais Universidade de Lisboa

Main Goal

To study two different levels of description for chemotaxis and to study how these two levels are related.

Consider a *kinetic model* $\mathcal{M}_{\varepsilon}$ with a certain non-dimensional parameter $\varepsilon > 0$.

Consider a *kinetic model* $\mathcal{M}_{\varepsilon}$ with a certain non-dimensional parameter $\varepsilon > 0$.

Consider the solution $\Psi_{\varepsilon} := (f_{\varepsilon}, S_{\varepsilon})$ (microscopic variables),

Consider a *kinetic model* $\mathcal{M}_{\varepsilon}$ with a certain non-dimensional parameter $\varepsilon > 0$.

Consider the solution $\Psi_{\varepsilon} := (f_{\varepsilon}, S_{\varepsilon})$ (microscopic variables), and consider $\Phi_{\varepsilon} := (\rho_{\varepsilon}, S_{\varepsilon}) := (\int_{V} f_{\varepsilon} dv, S_{\varepsilon})$ (macroscopic variables).

Consider a *kinetic model* $\mathcal{M}_{\varepsilon}$ with a certain non-dimensional parameter $\varepsilon > 0$.

Consider the solution $\Psi_{\varepsilon} := (f_{\varepsilon}, S_{\varepsilon})$ (microscopic variables), and consider $\Phi_{\varepsilon} := (\rho_{\varepsilon}, S_{\varepsilon}) := (\int_{V} f_{\varepsilon} dv, S_{\varepsilon})$ (macroscopic variables).

Let us define the limit

 $\Phi := \lim_{\varepsilon \to 0} (\rho_{\varepsilon}, S_{\varepsilon}) \; .$

Consider a *kinetic model* $\mathcal{M}_{\varepsilon}$ with a certain non-dimensional parameter $\varepsilon > 0$.

Consider the solution $\Psi_{\varepsilon} := (f_{\varepsilon}, S_{\varepsilon})$ (microscopic variables), and consider $\Phi_{\varepsilon} := (\rho_{\varepsilon}, S_{\varepsilon}) := (\int_{V} f_{\varepsilon} dv, S_{\varepsilon})$ (macroscopic variables).

Let us define the limit

 $\Phi := \lim_{\varepsilon \to 0} (\rho_{\varepsilon}, S_{\varepsilon}) .$

Question:

Which is the set of equations that Φ obey?

	$\begin{tabular}{l} Model $\varepsilon > 0$ \end{tabular}$		Limit model $\varepsilon \to 0$
Initial conditions	$\Psi^{\mathrm{I}}_{arepsilon}$	\longrightarrow	$\Phi^{\mathrm{I}} := \lim_{\varepsilon \to 0} \Phi^{\mathrm{I}}_{\varepsilon}$

	Model $\varepsilon > 0$	Limit model $\varepsilon \to 0$
Initial conditions	$\Psi^{\mathrm{I}}_arepsilon$	$\longrightarrow \Phi^{\mathrm{I}} := \lim_{\varepsilon \to 0} \Phi^{\mathrm{I}}_{\varepsilon}$
	\downarrow	\downarrow
Time evolution	$\mathcal{M}_{\varepsilon}[\Psi_{\varepsilon}] = 0$	$\mathcal{M}[\Phi] = 0$

		Model $\varepsilon > 0$		Limit model $\varepsilon \to 0$
Initial condi	tions	$\Psi^{\rm I}_{\varepsilon}$	\longrightarrow	$\Phi^{\mathrm{I}} := \lim_{\varepsilon \to 0} \Phi^{\mathrm{I}}_{\varepsilon}$
		\downarrow		\downarrow
Time evolut	ion	$\mathcal{M}_{\varepsilon}[\Psi_{\varepsilon}] = 0$		$\mathcal{M}[\Phi] = 0$
		\downarrow		\downarrow
Final state		$\Psi_{\varepsilon}(T)$?	$\Phi(T)$

	Model $\varepsilon > 0$		Limit model $\varepsilon \to 0$
Initial conditions	$\Psi^{\mathrm{I}}_arepsilon$	\longrightarrow	$\Phi^{\mathrm{I}} := \lim_{\varepsilon \to 0} \Phi^{\mathrm{I}}_{\varepsilon}$
	\downarrow		\bigvee
Time evolution	$\mathcal{M}_{\varepsilon}[\Psi_{\varepsilon}] = 0$		$\mathcal{M}[\Phi] = 0$
	\downarrow		\downarrow
Final state	$\Psi_{\varepsilon}(T)$?	$\Phi(T)$
If			
	$\Phi(t) = \lim_{\varepsilon \to 0} \Phi$	$\varepsilon(t)$,	t < T

(in some sense) then \mathcal{M} is the limit model of $\mathcal{M}_{\varepsilon}$.

Chemotaxis

Figure 1: Life cycle of *Dictyostelium discoideum*. Picture made by Florian Seigert and Kees Wiejer (Zoologisches Institut München Ludwig-Maximilians-Universität München).

Introduced by Alt (1980) and Othmer, Dunbar and Alt (1988).

Introduced by Alt (1980) and Othmer, Dunbar and Alt (1988).

The cell goes in straight line for a certain characteristic time and then changes its direction from v' to v (in a space-time point (x, t) in the presence of the substance S and cell density ρ) according to a certain turning kernel $T[S, \rho](x, v, v', t)$.

- Introduced by Alt (1980) and Othmer, Dunbar and Alt (1988).
- The cell goes in straight line for a certain characteristic time and then changes its direction from v' to v (in a space-time point (x, t) in the presence of the substance S and cell density ρ) according to a certain turning kernel $T[S, \rho](x, v, v', t)$.
- The set of all possible velocities is given by a compact, spherically symmetric set V.

$$\partial_t f(x, v, t) + v \cdot \nabla f(x, v, t) =$$

 $\int_{V} (T[S,\rho](x,v,v',t)f(x,v',t) - T[S,\rho](x,v',v,t)f(x,v,t))dv' .$

$$\partial_t f(x, v, t) + v \cdot \nabla f(x, v, t) =$$

 $\int_{V} (T[S,\rho](x,v,v',t)f(x,v',t) - T[S,\rho](x,v',v,t)f(x,v,t))dv' .$

f(x, v, t) = cell density in space-time point (x, t) with velocity v (*phase-space density*).

Notation

$$f = f(x, v, t) ,$$

$$f' = f(x, v', t) ,$$

$$T[S, \rho] = T[S, \rho](x, v, v', t) ,$$

$$T^*[S, \rho] = T[S, \rho](x, v', v, t).$$

Notation

$$f = f(x, v, t) ,$$

$$f' = f(x, v', t) ,$$

$$T[S, \rho] = T[S, \rho](x, v, v', t) ,$$

$$T^*[S, \rho] = T[S, \rho](x, v', v, t).$$

Equation

$$\partial_t f + v \cdot \nabla f = \int_V (T[S,\rho]f' - T^*[S,\rho]f)dv'$$
.

This is an example of a Boltzmann-type integro-differential equation (kinetic model).

This is an example of a Boltzmann-type integro-differential equation (kinetic model).

The "macroscopic" density ρ is related to the "microscopic" density f by

$$\rho(x,t) = \int_V f(x,v,t) dv \; .$$

- This is an example of a Boltzmann-type integro-differential equation (kinetic model).
- The "macroscopic" density ρ is related to the "microscopic" density f by

$$\rho(x,t) = \int_V f(x,v,t) dv \; .$$

• We should consider also an equation for S:

$$\partial_t S = D_0 \Delta S + \varphi(S, \rho)$$
.

Keller-Segel model

Mathematical model for chemotaxis introduced by Patlak (1953) and Keller and Segel (1970).

Mathematical model for chemotaxis introduced by Patlak (1953) and Keller and Segel (1970).

Keller-Segel equations:

$\partial_t \rho$	=	$\nabla \cdot (D\nabla \rho - \chi(S)\beta(\rho)\rho\nabla S)$,
$\partial_t S$	=	$D_0 \Delta S + \varphi(S, \rho)$.

 $\rho = \text{cell density}$,

- S = density of chemo-attractant,
- χ = chemotactic sensitivity ,
- $D, D_0 = \text{diffusion coefficients}$,
 - $\varphi = \text{interaction between } \rho \text{ and } S.$

Keller-Segel model

Typical example of interaction

$$\varphi(S,\rho) = \alpha \rho - \beta S ,$$

with $\alpha > 0, \beta \ge 0$.

Typical example of interaction

$$\varphi(S,\rho) = \alpha \rho - \beta S \; ,$$

with $\alpha > 0, \beta \ge 0$. Finite-time-blow-up:

 $\lim_{t \to T} \left(||\rho(\cdot, t)||_{L^{\infty}(\mathbb{R}^n)} + ||S(\cdot, t)||_{L^{\infty}(\mathbb{R}^n)} \right) = \infty .$

Ex: $\rho(\cdot, T) \rightarrow \delta_a$.

Let us go back to the Othmer-Dunbar-Alt model:

$$\partial_t f + v \cdot \nabla f = \int_V (T[S,\rho]f' - T^*[S,\rho])dv'$$
.

Let us go back to the Othmer-Dunbar-Alt model:

$$\partial_t f + v \cdot \nabla f = \int_V (T[S,\rho]f' - T^*[S,\rho])dv'$$
.

Re-scaling

$$egin{array}{rll} x' &=& x/x_0 \,, &t' &=& t/t_0 \,, &v' &=& v/v_0 \,, \ T' &=& T/T_0 \,, &S' &=& S/S_0 \,, &
ho' &=&
ho/
ho_0 \,, \ f' &=& f/f_0 \,. \end{array}$$

$$\begin{aligned} \frac{\partial f}{\partial t} + \frac{v_0}{x_0/t_0} v \cdot \nabla f &= T_0 v_0^n t_0 \int_V \left(Tf' - T^*f\right) dv' ,\\ \frac{\partial S}{\partial t} &= \frac{t_0}{x_0^2} D_0 \Delta S + \frac{\alpha_1 \rho_0 t_0}{S_0} \rho - \alpha_2 t_0 S ,\\ \rho &= \frac{f_0 v_0^n}{\rho_0} \int_V f \, dv . \end{aligned}$$

$$\begin{aligned} \frac{\partial f}{\partial t} + \frac{v_0}{x_0/t_0} v \cdot \nabla f &= T_0 v_0^n t_0 \int_V (Tf' - T^*f) \, dv' ,\\ \frac{\partial S}{\partial t} &= \frac{t_0}{x_0^2} D_0 \Delta S + \frac{\alpha_1 \rho_0 t_0}{S_0} \rho - \alpha_2 t_0 S ,\\ \rho &= \frac{f_0 v_0^n}{\rho_0} \int_V f \, dv . \end{aligned}$$

We impose the *diffusive scaling*: $t_0 \approx x_0^2$, normalizations and

$$\varepsilon = \frac{x_0/t_0}{v_0}.$$

$$\begin{aligned} \frac{\partial f}{\partial t} &+ \frac{1}{\varepsilon} v \cdot \nabla f &= \frac{1}{\varepsilon^2} \int_V \left(T_\varepsilon f' - T_\varepsilon^* f \right) dv' ,\\ \frac{\partial S}{\partial t} &= \Delta S + \rho - S ,\\ \rho &= \int_V f \, dv . \end{aligned}$$

The kernel T depends on ε ...

$$\frac{\partial f_{\varepsilon}}{\partial t} + \frac{1}{\varepsilon} v \cdot \nabla f_{\varepsilon} = \frac{1}{\varepsilon^2} \int_V (T_{\varepsilon} f'_{\varepsilon} - T^*_{\varepsilon} f_{\varepsilon}) dv' ,$$
$$\frac{\partial S_{\varepsilon}}{\partial t} = \Delta S_{\varepsilon} + \rho_{\varepsilon} - S_{\varepsilon} ,$$
$$\rho_{\varepsilon} = \int_V f_{\varepsilon} dv .$$

The solution depends on ε ...

Consider the turning kernel

$$T_{\varepsilon}[S,\rho] = T_0[S,\rho] + \varepsilon T_1[S,\rho] + \cdots$$

such that

$$T_0[S,\rho] = \lambda(S,\rho)(x,t)F(v) ,$$

$$T_1[S,\rho] = F(v)a(S,\rho)v \cdot \nabla S ,$$

where

$$F > 0$$
, $\int_{V} F dv = 1$, $\int_{V} v F dv = 0$,

 $\lambda \ge \lambda_{\min} > 0$

Kinetic models for chemotaxis – p.

Two possible examples are given by

$$T_{\varepsilon}[S,\rho] = F(v)\lambda(S,\rho) + \varepsilon F(v)a(S,\rho)v \cdot \nabla S ,$$

$$T_{\varepsilon}[S,\rho] = \psi(S(x,t), S(x + \varepsilon\mu(\rho)v,t))F(v) ,$$

Two possible examples are given by

$$T_{\varepsilon}[S,\rho] = F(v)\lambda(S,\rho) + \varepsilon F(v)a(S,\rho)v \cdot \nabla S ,$$

$$T_{\varepsilon}[S,\rho] = \psi(S(x,t), S(x + \varepsilon \mu(\rho)v, t))F(v) ,$$

We consider the formal expansion of the solutions:

$$f_{\varepsilon} = f_0 + \varepsilon f_1 + \varepsilon^2 f_2 + \cdots,$$

$$S_{\varepsilon} = S_0 + \varepsilon S_1 + \varepsilon^2 S_2 + \cdots,$$

Two possible examples are given by

$$T_{\varepsilon}[S,\rho] = F(v)\lambda(S,\rho) + \varepsilon F(v)a(S,\rho)v \cdot \nabla S ,$$

$$T_{\varepsilon}[S,\rho] = \psi(S(x,t), S(x + \varepsilon \mu(\rho)v, t))F(v) ,$$

We consider the formal expansion of the solutions:

$$f_{\varepsilon} = f_0 + \varepsilon f_1 + \varepsilon^2 f_2 + \cdots,$$

$$S_{\varepsilon} = S_0 + \varepsilon S_1 + \varepsilon^2 S_2 + \cdots$$

We put these expansions in the model, match terms with the same order of ε and solve the resulting system.

In both cases the *formal* drift-diffusion limit is given by the zeroth order equations (Othmer, Hillen)

$$\partial_t \rho_0 = \nabla \cdot \left(D(S_0, \rho_0) \nabla \rho_0 - \chi(S_0, \rho_0) \rho_0 \nabla S_0 \right) , \partial_t S_0 = \Delta S_0 + \rho_0 - S_0 ,$$

In both cases the *formal* drift-diffusion limit is given by the zeroth order equations (Othmer, Hillen)

$$\frac{\partial_t \rho_0}{\partial_t S_0} = \nabla \cdot \left(D(S_0, \rho_0) \nabla \rho_0 - \chi(S_0, \rho_0) \rho_0 \nabla S_0 \right) , \frac{\partial_t S_0}{\partial_t S_0} = \Delta S_0 + \rho_0 - S_0 ,$$

where

$$D(S_0, \rho_0) := \frac{1}{n\lambda(S_0, \rho_0)} \int_V v^2 F dv \mathbb{I},$$

$$\chi(S_0, \rho_0) := \frac{a(S, \rho)}{n\lambda(S_0, \rho_0)} \left(\int_V v^2 F dv \right)$$

General Picture (again...)

		Model $\varepsilon > 0$		Limit model $\varepsilon \to 0$
Initial	conditions	$\Psi^{\rm I}_{\varepsilon}$	\longrightarrow	$\Phi^{\mathrm{I}} := \lim_{\varepsilon \to 0} \Phi^{\mathrm{I}}_{\varepsilon}$
		\downarrow		\downarrow
Time e	volution	$\mathcal{M}_{\varepsilon}[\Psi_{\varepsilon}] = 0$		$\mathcal{M}[\Phi] = 0$
		\downarrow		\downarrow
Final s	tate	$\Psi_{\varepsilon}(T)$?	$\Phi(T)$
If				
		$\Phi(t) = \lim_{\varepsilon \to 0} \Phi$	$e_{\varepsilon}(t)$,	t < T

(in some sense) then \mathcal{M} is the limit model of $\mathcal{M}_{\varepsilon}$.

Rigorous results

Theorem (C., Markowich, Perthame, Schmeiser, Hwang, Kang, Stevens, Rodrigues): Consider turning kernels T_{ε} depending on S_{ε} , ∇S_{ε} and ρ_{ε} under mild assumptions. Then, the solution of the kinetic model $(f_{\varepsilon}, S_{\varepsilon})$ is such that

$$\begin{array}{rcl} \rho_{\varepsilon} & \to & \rho_0 \ \mbox{in} \ L^2_{\rm loc}(\mathbb{R}^n) \ , \\ S_{\varepsilon} & \to & S_0 \ \mbox{in} \ L^q_{\rm loc}(\mathbb{R}^n) \ , 1 \leq q < \infty \ , \\ \nabla S_{\varepsilon} & \to & \nabla S_0 \ \mbox{in} \ L^q_{\rm loc} \ , 1 \leq q < \infty. \end{array}$$

where (ρ_0, S_0) is the solution of the associated Keller-Segel model.

Rigorous Results

By *mild* assumptions we mean:

$$\begin{split} \phi_{\varepsilon}^{S}[\rho,S] &\geq \gamma(1-\varepsilon\Lambda(||S||_{W^{1,\infty}}))FF',\\ \int_{V} \frac{\phi_{\varepsilon}^{A}[\rho,S]^{2}}{F\phi_{\varepsilon}^{S}[\rho,S]} dv' &\leq \varepsilon^{2}\Lambda(||S||_{W^{1,\infty}}), \end{split}$$

where

$$\begin{split} \phi_{\varepsilon}^{S} &:= \frac{T_{\varepsilon}[S,\rho]F' + T_{\varepsilon}^{*}[\rho,S]F}{2} ,\\ \phi_{\varepsilon}^{A} &:= \frac{T_{\varepsilon}[S,\rho]F' - T_{\varepsilon}^{*}[\rho,S]F}{2} , \end{split}$$

and other more technical ones.

Theorem (C., Markowich, Perthame, Schmeiser, Hwang, Kang, Stevens): Consider turning kernels such that:

 $0 \leq T_{\varepsilon}[S_{\varepsilon}, \nabla S_{\varepsilon}] \leq c_{1} + c_{2}S(x + \varepsilon v, t) + c_{3}S(x - \varepsilon v', t)$ $+ c_{4}|\nabla S(x + \varepsilon v, t)| + c_{5}|\nabla S(x - \varepsilon v, t)|,$ $|\nabla T_{\varepsilon}[S_{\varepsilon}, \nabla S_{\varepsilon}]| \leq c_{2}|\nabla S(x + \varepsilon v, t)| + c_{3}|\nabla S(x - \varepsilon v', t)|$ $+ c_{4}|\nabla^{2}S(x + \varepsilon v, t)| + c_{5}|\nabla^{2}S(x - \varepsilon v, t)|.$

The kinetic model has global existence of solutions.

Let us consider

$$T_{\varepsilon}[S](x, v, v', t) = \psi(S(x + \varepsilon v, t) - S(x, t))$$

with $\psi \ge \psi_{\min} > 0$, increasing and $\psi(y) \le Ay + B$.

 \mathcal{T}

Let us consider

$$T_{\varepsilon}[S](x, v, v', t) = \psi(S(x + \varepsilon v, t) - S(x, t))$$

with $\psi \ge \psi_{\min} > 0$, increasing and $\psi(y) \le Ay + B$. Then the kinetic model has global existence of solution, converges (in the drift diffusion limit) to the *classical* Keller-Segel model (which presents blow up). **Theorem** (C., Rodrigues): For certain classes of turning kernels $T_{\varepsilon}[S_{\varepsilon}, \nabla S_{\varepsilon}, \rho_{\varepsilon}]$, such that if $\rho_{\varepsilon}(x, t) \geq \bar{\rho}$, then

 $T_{\varepsilon}[S_{\varepsilon}, \nabla S_{\varepsilon}, \rho_{\varepsilon}](x, v, v', t) = T_0[S_{\varepsilon}, \nabla S_{\varepsilon}, \rho_{\varepsilon}](x, v, v', t) ,$

and for ε small enough, we conclude global existence of solution $(f_{\varepsilon}, S_{\varepsilon})$.

Theorem (C., Rodrigues): For certain classes of turning kernels $T_{\varepsilon}[S_{\varepsilon}, \nabla S_{\varepsilon}, \rho_{\varepsilon}]$, such that if $\rho_{\varepsilon}(x, t) \geq \bar{\rho}$, then

 $T_{\varepsilon}[S_{\varepsilon}, \nabla S_{\varepsilon}, \rho_{\varepsilon}](x, v, v', t) = T_0[S_{\varepsilon}, \nabla S_{\varepsilon}, \rho_{\varepsilon}](x, v, v', t) ,$

and for ε small enough, we conclude global existence of solution $(f_{\varepsilon}, S_{\varepsilon})$. Furthermore,

 $\overline{||\rho_{\varepsilon}(\cdot,t)||_{L^{\infty}(\mathbb{R}^{n})}} \leq \max\{\bar{\rho}, ||\rho^{\mathrm{I}}||_{L^{\infty}(\mathbb{R}^{n})}\}.$

Example:

$$T_{\varepsilon}[S,\rho] = \lambda(S,\rho)F + \varepsilon a(S,\rho)Fv \cdot \nabla S ,$$

$$T_{\varepsilon}[S,\rho] = \psi(S(x + \varepsilon \mu(\rho)v,t) - S(x,t))F$$

with

$$a(S,\rho) = 0$$
, $\mu(\rho) = 0$, $\rho \ge \bar{\rho} > 0$.

Example:

$$T_{\varepsilon}[S,\rho] = \lambda(S,\rho)F + \varepsilon a(S,\rho)Fv \cdot \nabla S,$$

$$T_{\varepsilon}[S,\rho] = \psi(S(x + \varepsilon \mu(\rho)v,t) - S(x,t))F$$

with

$$a(S,\rho) = 0$$
, $\mu(\rho) = 0$, $\rho \ge \bar{\rho} > 0$.

Corollary: For the limit Keller-Segel model, we can conclude global existence of solutions. Furthermore, the cell density is bounded. (Hillen, Painter)

 $\partial_t \rho = \nabla \cdot (\nabla \rho - \beta(\rho) \rho \nabla S) , \ \beta(\rho) = 0 , \rho \ge \bar{\rho} > 0 .$

Q:What is the meaning of blow up?

Q:What is the meaning of blow up? A:Changes of orders of magnitude with respect to the certain variables.

Q:What is the meaning of blow up? A:Changes of orders of magnitude with respect to the certain variables.

Q:Is blow up good or bad?

Q:What is the meaning of blow up? A:Changes of orders of magnitude with respect to the certain variables.

Q:Is blow up good or bad? A:Bad: Blow up does not exists in nature, we should look for models without blow up. Q:What is the meaning of blow up? A:Changes of orders of magnitude with respect to the certain variables.

Q:Is blow up good or bad?

A:*Bad*: Blow up does not exists in nature, we should look for models without blow up.

A:*Good*: Keller-Segel model cannot be valid after certain time, so a realistic model should indicate that it breaks down.

Q: Can we prevent blow up?

Q: Can we prevent blow up? A: Yes. This was done in the kinetic level. Other possibility is given by Velazquez:

$$\partial_t \rho = \nabla \cdot \left(\nabla \rho - \frac{\rho}{1 + \mu \rho} \nabla S \right)$$

For any $\mu > 0$, there is global existence of solutions. For $\mu = 0$, solutions blow up in finite time.

With

$$T_{\varepsilon,\mu}[S,\rho] = \psi \left(S \left(x + \frac{\varepsilon}{1+\mu\rho} v \right) - S \left(x, t \right) \right)$$

the solution exists globally and the drift-diffusion limit (*globally in time*) is the Velazquez' model (C., Kang).

Model ($\varepsilon > 0$)	Limit model ($\varepsilon \to 0$)
Closer to first principles.	Phenomenological.

Model ($\varepsilon > 0$)	Limit model ($\varepsilon \to 0$)
Closer to first principles.	Phenomenological.
Detailed description.	Simpler picture.

Model ($\varepsilon > 0$)	Limit model ($\varepsilon \to 0$)
Closer to <i>first principles</i> .	Phenomenological.
Detailed description.	Simpler picture.
Difficult to handle.	Easy to find solutions.

Model ($\varepsilon > 0$)	Limit model ($\varepsilon \to 0$)
Closer to <i>first principles</i> .	Phenomenological.
Detailed description.	Simpler picture.
Difficult to handle.	Easy to find solutions.

THE END