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Introduction

Selection-Mutation equations —— Equations for the
density of individuals with respect to some evolutionary
discrete or continuous trait (number of alleles at a given
gene locus, size, age at maturity...)

Two major fields where this type of eguations have been
used:

Population Genetics (Crow, Kimura (64, 65), Blirger (89,
91, 96, 00)).

Phenotypic evolution (Perell6, Calsina, Saldafia (89, 94,
95, 03) Magal, Webb (00)).
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Introduction

u(x,t) density of individuals with respect to some
evolutionary trait .

Individuals are characterized by their type x, where
x € () (space of all admissible types) {2 = R or
(2 =10, 1] or 2 = R" (for instance).

u(x,t) > 0, u(x,t) integrable with respect to x for any
fixed t (J, u(x,t)dz = Total population).
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Introduction

The usual form of this kind of models contains two terms

Selection — Process by which organisms with traits
well adapted to an environment survive and reproduce
al a greater rate.

Nonlinear terms that model the competitive
Interaction between individuals.

Mutation ——Changesin the genetic material which
can be passed from parents to offspring.

Incorporated as a linear operator which must model
the diffusive effect on the trait space of inaccurate
replication.

ion equations — p.4



Introduction

Mutation term. Two approaches:

Stationary solutions of selection mutation equations — p.5



Introduction

Mutation term. Two approaches:

* Laplacian Operator ,uAu
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Introduction

Mutation term. Two approaches:

L aplacian Operator 1Au (where 1 denotes the
mutation rate).

Integral operator with akernel 3(x, y) representing
the density of probability that an individual with trait
y has offspring with trait x.



Example

One parameter family competing for a limited amount of
resources (Calsina, Perell0)

t:(ﬂf—fo )u+aum r € (0,1),
u(z,0) = up(z),
4(0.£) = (i

u(x,t) : density of population at time ¢ of individuals
withz € [0, 1],
x . population’s rate of growth without restriction

(total growth rate decreased by total population because
they share limited resources),

au,., . diffusion that represents the mutation.

ion equations — p.6



Example : A model for the maturation age | (Calsina, C.)

ux,t) = [ bly)G(a e

—my ([, u(y, t)dy)u(z,t) — zu(z, t),

vz, t) = zu(z,t) — mal s UlN0IdHIEE.

r = 7, b(x) trait specific fertility, m; mortality rates,
B.(x,y) isthe density of probability that the trait of the
offspring of an individual with trait y Is z,

(fooo Be(x, y)dx = 1)1

suppf. (-, y) containstheinterval (max(0,y —9),y +9),
e (maximum) size of the mutation.



Example: A model for the maturation age Il (Calsina, C.)

ug(x, t) (1 —e)b(z)v(x,t)

+e [ b(y)v(z, y)v(y, t)dy

©9)

—ml( ; u(y,t)dy)u(x,t)—mu(x,t),

vz, t) = zu(z,t) —mo( [ vy, t)dy)v(z,t).

e stands for the probability of mutation,
v(x,y) is the density of probability that the trait of the
mutant offspring of an individual with trait y is x.
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Example: Predator prey model (Calsina, C.)

( S = (CL—,uf fo 1_|_ﬂ)(l;()x;z)d

z) f(t),

- —doute)+ 1~ LIRS

o aB(y) f(t)uly, t)
| el T swnre

a and p Intrinsic growth rate and competition coefficient
of the prey population, G(z) searching efficiency,

x Index of activity of the predator population,

d(z) mortality rate of the predator population.
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Introduction

Study of the equilibria of these equations for the
density of individuals with respect to a phenotypic
evolutionary trait and their relation with the
evolutionarily stable values (ESS) of the underlying
ecological models.

uw'(t) = (& — u(t))u(?),
w(t) = blx)v(t) — my(u(t))u(t) — xu(t),

V() = wu(t) — ma(v(t))v(t),

Stability of these equilibria.



Introduction

Evolutionarily Stable Strategies (ESS) (Maynard Smith
and Price, 73) — Stationary values of the evolutionary
Process.

Definition. A strategy (phenotypic characteristic) & is an ESS if
a clonal population of individuals with strategy & (resident
population) cannot be invaded by another small clonal
population of individuals with a different strategy y (mutant
population).
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Introduction

Evolutionarily Stable Strategies (ESS) (Maynard Smith
and Price, 73) — Stationary values of the evolutionary
Process.

Definition. A strategy (phenotypic characteristic) & is an ESS if
a clonal population of individuals with strategy & (resident
population) cannot be invaded by another small clonal
population of individuals with a different strategy y (mutant
population).

An ESS is stable against the invasion of mutants but not
necessarily an evolutionary attractor (not necessarily alim-
Iting value of a sequence of strategies driven by natural se-
lection).
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Evolutionary dynamics

Mathematical formulation of the ESS concept for systems
of theform

i, = Al
where u denotes the resident population, x is a parameter
denoting the strategy of the population and A(w, x) is a
linear operator. We assume that the system has a unique
attractor whichisahyperbolic nontrivial equilibrium point

—

U



Evolutionary dynamics

Small mutant population, ', with strategy v.
System for the couple of populations

i, = Al urais

U = Al u s
whereVu,z A(u,0,z) = A(u, x).
Thevalue x of the strategy isan ESS if the equilibrium

point (&, 0) is hyperbolic and asymptotically stable for
this system for any y = x.



Equilibria

Selection mutation eguations can be written in a (rather)
general way

where I : L'(I,R") — R™ (linear and continuous).
For fixed F, A.(F) infinitesimal generator of a positive
semigroup.

Let us assume that A.(F) has a dominant eigenvalue
A (E) (= s(A.(F))) with anormalized (positive) eigen-
vector u. (). Moreover, we assume that . z(z) isthe
only positive eigenvector of A.(E).
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How do we compute equilibria of these
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Equilibria

How do we compute equilibria of these models?
u € L'(I,R") isapositive equilibrium of
Uy = A (F(w))u
fore > 0if anonly if thereexistc > 0 and £ € R™ such
that © = cu. p and c and E satisfy
A(FE) = s(Ag(E)) =1

(1)
F(C?Z&E) — b —s

1+dim(F). equations (1+dim(F) unknowns (¢, E)).
Eigenvalue problem +- Fixed point problem.
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Equilibria

L et us assume that, for every (sufficiently small) e > 0
there exists an equilibrium solution u. := c.u. . of the
nonlinear equation u; = A.(F(u))u.

How does this steady state behave when e — 07?



Equilibria

Let us consider, for fixed -, the n-dimensional ordinary
differential equations system

v, = Aolz, Gl uh (1)

where G(x,-) is a linear function from R” to R™,
(G(x,¥) = F(05,)), € I isarea parameter and
Ao(x, ) isan x n matrix. Let 2 denote the value of
ESS of this system.



Equilibria

Then the family of equilibriau, satisfies

e—0 —

ﬁs = Uﬁcd@

in the weak star topology (of L' (I, R™)) where v; isthe
positive equilibrium of the system

Uy = AO(I,G(I,ﬁ))ﬁ
for x = x (ESS value).

e—0

Moreover [~ ul(x)dr — vi, i =1...n.

€



Equilibria
Under reasonable hypotheses,
iy = A (F(@))u

has afamily of equilibria . that tend to concentrate at the
ESS of the finite dimensional "limit" system

rU_z)f = AO(:E7 G(Qf, ?7))?7

when ¢ tends to O.
Moreover, the integral of u. (the total population at
equilibrium) tends to the equilibrium of the finite

dimensional "limit" system for the value x of the
parameter.



Stability

where F' : (1, REE==E




Stability

i, = A(E (@i (2)
where F' : L'(I,R") — R™ (linear and continuous).
Assumptions:

For fixed E/, A.(FE) generates an analytic positive
semigroup.

A.(FE) can be written as the sum of a constant
(independent of £') operator and a bounded linear
operator depending smoothly on £ .

There exists a positive equilibrium solution u. of (2).
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Stability

Stability by the linear approximation — |f the spec
the linearization of u; = A.(F(u))u at

point i, liesin {Re\ < (3} for so
uniformly asymptotically stabl
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Stability

Linearizing, we obtain
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Stability

Computing the spectrum of the operator A, + 5. we
obtain

o(A+S.) C o(A)U{X : det(Id+S.(A.—AId) ) = 0}.

where det(Id + S.(A. — Md) ) =: w.()\)
Weinstein Aronszajn determinant defined as

det(1d+S.(A.~AId) ") = det( (Id+S.(A.~ALd) "), ).

where (S, ) denotes the range of the operator S.
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Stability

5T AO(Qj G(x 27))_,

© ESSand v; equilibrium (asymptotical
Linearizing v; = Ay(Z, G(f ?7))




Stability

wo(\) is holomorphic for A & o (A,).
If 0 isadominant eigenvalue of A, then wy(\) is
holomorphic for A suchthat Re A > 0, A # 0.

As we assume that the equilibrium point v, is hyperbolic
and asymptotically stable, wy(\) does not vanish for A
suchthat Re A > 0, A # 0.

For £ small enough, does w, (\) have the same property?



Stability

e—0

By Rouche’s theorem, if w.(\) — wy(A) uniformly on
A in compact setsthen VL, > 0 de small enough such

that
we(A) # 0
forAe{AeC st. ReA>0,0< L; < |\ < Ly}

(U; asymptotically stable —wy(A) # 0 for A € {\ €
C st. ReA >0,\#0}).
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Stability

If there exists L; > 0 such that for € small

~

{AeC st. ReRA>0,[AN<Li}no(A.+S.)=10
then for £ small enough, the equilibrium solution . of the
nonlinear equation u;, = A.(F(u))u

Is uniformly asymptotically stable.



Stability

If there exists L; > 0 such that for € small

~

{AheC st. ReA>20,[A < Li}jno(4.+S.) =10
then for € small enough, the equilibrium solution . of the

nonlinear equation u;, = A.(F(u))u
Is uniformly asymptotically stable.

Case F' onedimensional (F' : L'(I,R") — R)
(Weinstein-Aronszajn formula).
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