
Stationary solutions of selection
mutation equations

ANGEL CALSINA, SÍLVIA CUADRADO
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Introduction

Selection-Mutation equations

−→ Equations for the
density of individuals with respect to some evolutionary
discrete or continuous trait (number of alleles at a given
gene locus, size, age at maturity...)

Two major fields where this type of equations have been
used:

• Population Genetics (Crow, Kimura (64, 65), Bürger (89,
91, 96, 00)).

• Phenotypic evolution (Perelló, Calsina, Saldaña (89, 94,
95, 03) Magal, Webb (00)).
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Introduction

u(x, t) density of individuals with respect to some
evolutionary trait x.

Individuals are characterized by their type x, where
x ∈ Ω (space of all admissible types) Ω = R or
Ω = [0, 1] or Ω = Rn (for instance).

u(x, t) ≥ 0, u(x, t) integrable with respect to x for any

fixed t (
∫

Ω
u(x, t)dx = Total population).
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Introduction

The usual form of this kind of models contains two terms

• Selection −→ Process by which organisms with
traits well adapted to an environment survive and
reproduce at a greater rate.
Nonlinear terms that model the competitive
interaction between individuals.

• Mutation −→Changes in the genetic material which
can be passed from parents to offspring.
Incorporated as a linear operator which must model
the diffusive effect on the trait space of inaccurate
replication.
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Introduction

Mutation term. Two approaches:

• Laplacian Operator µ∆u (where µ denotes the
mutation rate).

• Integral operator with a kernel β(x, y) representing
the density of probability that an individual with trait
y has offspring with trait x.
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Example

One parameter family competing for a limited amount of
resources (Calsina, Perelló)







ut =
(

x−
∫ 1

0
u
)

u+ auxx x ∈ (0, 1),
u(x, 0) = u0(x),
u(0, t) = u(1, t) = 0.

u(x, t) : density of population at time t of individuals
with x ∈ [0, 1],
x : population’s rate of growth without restriction
(total growth rate decreased by total population because
they share limited resources),

auxx : diffusion that represents the mutation.
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Example : A model for the maturation age I (Calsina, C.)























ut(x, t) =
∫ ∞

0
b(y)βε(x, y)v(y, t)dy

−m1

( ∫ ∞

0
u(y, t)dy

)

u(x, t)− xu(x, t),

vt(x, t) = xu(x, t)−m2

( ∫ ∞

0
v(y, t)dy

)

v(x, t).

x = 1

T
, b(x) trait specific fertility, mi mortality rates,

βε(x, y) is the density of probability that the trait of the
offspring of an individual with trait y is x,
(
∫∞
0

βε(x, y)dx = 1),
suppβε(·, y) contains the interval (max(0, y− δ), y+ δ),
ε (maximum) size of the mutation.
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Example: A model for the maturation age II (Calsina, C.)







































ut(x, t) = (1− ε)b(x)v(x, t)

+ε
∫ ∞

0
b(y)γ(x, y)v(y, t)dy

−m1

( ∫ ∞

0
u(y, t)dy

)

u(x, t)− xu(x, t),

vt(x, t) = xu(x, t)−m2

( ∫ ∞

0
v(y, t)dy

)

v(x, t).

ε stands for the probability of mutation,

γ(x, y) is the density of probability that the trait of the

mutant offspring of an individual with trait y is x.
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Example: Predator prey model (Calsina, C.)



















































f ′(t) =
(

a− µf(t)−
∫∞

0

β(x)u(x, t)

1 + β(x)hf(t)
dx
)

f(t),

∂u(x, t)

∂t
= −d(x)u(x, t) + (1− ε)

αβ(x)f(t)u(x, t)

1 + β(x)hf(t)

+ ε
∫∞

0
γ(x, y)

αβ(y)f(t)u(y, t)

1 + β(y)hf(t)
dy,

a and µ intrinsic growth rate and competition coefficient
of the prey population, β(x) searching efficiency,
x index of activity of the predator population,
d(x) mortality rate of the predator population.
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Introduction

• Study of the equilibria of these equations for the
density of individuals with respect to a phenotypic
evolutionary trait and their relation with the
evolutionarily stable values (ESS) of the underlying
ecological models .

u′(t) = (x− u(t))u(t),






u′(t) = b(x)v(t)−m1(u(t))u(t)− xu(t),

v′(t) = xu(t)−m2(v(t))v(t),

• Stability of these equilibria.
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Introduction

Evolutionarily Stable Strategies (ESS) (Maynard Smith
and Price, 73)→ Stationary values of the evolutionary
process.

Definition. A strategy (phenotypic characteristic) x is an ESS if
a clonal population of individuals with strategy x (resident
population) cannot be invaded by another small clonal
population of individuals with a different strategy y (mutant
population).

An ESS is stable against the invasion of mutants but not

necessarily an evolutionary attractor (not necessarily a lim-

iting value of a sequence of strategies driven by natural se-

lection).
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Evolutionary dynamics

Mathematical formulation of the ESS concept for systems
of the form

~ut = A(~u, x)~u

where ~u denotes the resident population, x is a parameter

denoting the strategy of the population and A(~u, x) is a

linear operator. We assume that the system has a unique

attractor which is a hyperbolic non trivial equilibrium point

~ux.
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Evolutionary dynamics

Small mutant population, ~ui, with strategy y.
System for the couple of populations







~ut = A(~u, ~ui, x)~u,

~ui
t = A(~u, ~ui, y)~ui,

(0)

where ∀~u, x A(~u, 0, x) = A(~u, x).
The value x of the strategy is an ESS if the equilibrium
point (~ux,~0) is hyperbolic and asymptotically stable for
this system for any y 6= x.
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Equilibria

Selection mutation equations can be written in a (rather)
general way

~ut = Aε(F (~u))~u

where F : L1(I,Rn) −→ Rm (linear and continuous).
For fixed E, Aε(E) infinitesimal generator of a positive
semigroup.

Let us assume that Aε(E) has a dominant eigenvalue

λε(E)(= s(Aε(E))) with a normalized (positive) eigen-

vector ~uε,E(x). Moreover, we assume that ~uε,E(x) is the

only positive eigenvector of Aε(E).
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Equilibria

How do we compute equilibria of these models?

~u ∈ L1(I,Rn) is a positive equilibrium of

~ut = Aε(F (~u))~u

for ε > 0 if an only if there exist c > 0 and E ∈ Rm such
that ~u = c~uε,E and c and E satisfy







λε(E) = s
(

Aε(E)
)

= 0,

F
(

c~uε,E

)

− E = 0.
(1)

1+dim(F). equations (1+dim(F) unknowns (c, E)).

Eigenvalue problem + Fixed point problem.
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Equilibria

Let us assume that, for every (sufficiently small) ε > 0
there exists an equilibrium solution ~uε := cε~uε,Eε

of the
nonlinear equation ~ut = Aε(F (~u))~u.

How does this steady state behave when ε→ 0?
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Equilibria

Let us consider, for fixed x, the n-dimensional ordinary
differential equations system

~vt = A0(x,G(x,~v))~v (1)

where G(x, ·) is a linear function from Rn to Rm,
(

G(x,~v) = F (~vδx)
)

, x ∈ I is a real parameter and

A0(x,E) is a n × n matrix. Let x̂ denote the value of

ESS of this system.
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Equilibria

Then the family of equilibria ~uε satisfies

~uε
ε→0

−→ ~vx̂δx̂

in the weak star topology (of L1(I,Rn)) where ~vx̂ is the
positive equilibrium of the system

~vt = A0(x,G(x,~v))~v

for x = x̂ (ESS value).

Moreover
∫ ∞

0
ui

ε(x)dx
ε→0

−→ vi
x̂, i = 1 . . . n.
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Equilibria

Under reasonable hypotheses,

~ut = Aε(F (~u))~u

has a family of equilibria ~uε that tend to concentrate at the
ESS of the finite dimensional "limit" system

~vt = A0(x,G(x,~v))~v

when ε tends to 0.
Moreover, the integral of ~uε (the total population at
equilibrium) tends to the equilibrium of the finite
dimensional "limit" system for the value x̂ of the
parameter.
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Stability

~ut = Aε(F (~u))~u (2)

where F : L1(I,Rn) −→ Rm (linear and continuous).

Assumptions:

• For fixed E, Aε(E) generates an analytic positive
semigroup.

• Aε(E) can be written as the sum of a constant
(independent of E) operator and a bounded linear
operator depending smoothly on E.

• There exists a positive equilibrium solution ~uε of (2).
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Stability

Stability by the linear approximation→ If the spectrum of

the linearization of ~ut = Aε(F (~u))~u at the equilibrium

point ~uε lies in {Reλ < β} for some β < 0 then ~uε is

uniformly asymptotically stable.
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Stability

Linearizing, we obtain

~vt = Aε(Eε)~v +DAε(Eε)F (~v)~uε

=: Ãε~v + Sε~v.

Eε := F (~uε),
Sε is a linear operator with finite dimensional range
(≤ m)

(generated by {DAε(Eε)ei~uε}
m
i=1 where {ei}

m
i=1 is a basis

of Rm).
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Stability

Computing the spectrum of the operator Ãε + Sε we
obtain

σ(Ãε+Sε) ⊂ σ(Ãε)∪{λ : det
(

Id+Sε

(

Ãε−λId
)−1)

= 0}.

where det
(

Id+ Sε

(

Ãε − λId
)−1)

=: ωε(λ)
Weinstein Aronszajn determinant defined as

det
(

Id+Sε

(

Ãε−λId
)−1

)

= det
(

(

Id+Sε

(

Ãε−λId
)−1)

|R(Sε)

)

.

where R(Sε) denotes the range of the operator Sε
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Stability

~vt = A0(x,G(x,~v))~v,

x̂ ESS and ~vx̂ equilibrium (asymptotically stable).
Linearizing ~vt = A0(x̂, G(x̂, ~v))~v

~w′ = A0(x̂, E0)~w +
(∂A0

∂G
(x̂, E0)G(x̂, ~w)

)

~vx̂

=: Ã0 ~w + S0 ~w.

where E0 := G(x̂, ~vx̂).

ω0(λ) := det
(

Id+ S0(Ã0 − λId)−1
)

.
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Stability

ω0(λ) is holomorphic for λ /∈ σ(Ã0).

If 0 is a dominant eigenvalue of Ã0 then ω0(λ) is
holomorphic for λ such that Re λ ≥ 0, λ 6= 0.

As we assume that the equilibrium point ~vx̂ is hyperbolic
and asymptotically stable, ω0(λ) does not vanish for λ
such that Re λ ≥ 0, λ 6= 0.

For ε small enough, does ωε(λ) have the same property?
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Stability

By Rouche’s theorem, if ωε(λ)
ε→0

−→ ω0(λ) uniformly on
λ in compact sets then ∀L1 > 0 ∃ε small enough such
that

ωε(λ) 6= 0

for λ ∈ {λ ∈ C s.t. Reλ ≥ 0, 0 < L1 ≤ |λ| ≤ L2}.

(~vx̂ asymptotically stable −→ω0(λ) 6= 0 for λ ∈ {λ ∈

C s.t. Reλ ≥ 0, λ 6= 0}).
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Stability

L1 L2

Stationary solutions of selection mutation equations – p.27



Stability

If there exists L1 > 0 such that for ε small
{λ ∈ C s.t. Reλ ≥ 0, |λ| < L1} ∩ σ(Ãε + Sε) = ∅
then for ε small enough, the equilibrium solution ~uε of the
nonlinear equation ~ut = Aε(F (~u))~u
is uniformly asymptotically stable.

Case F one dimensional (F : L1(I,Rn) −→ R)
(Weinstein-Aronszajn formula).
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