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Outline of the talk:

• How do cells move?

• Modelling chemotaxis

– Macroscopic models : parabolic models, hyperbolic models

– Mesoscopic or kinetic models: an intermediate approach
between micro and macro models.

• Kinetic equations to make the link between the different models:

– Cattaneo system for chemotaxis

– Nonlinear hyperbolic model.

• Overview of the well-balanced algorithm

• Simulation of hyperbolic models

• Conclusions and perspectives
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How do cells move?

Nearly all cells are endowed with devices allowing them to move.
From E. Coli (bacteria)...

Figure 1: A representation of bacterium Escherichia Coli.
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How do cells move?

the Dictyostelium Discoideum (amoeboid cells)

Figure 2: Motion of Dictyostelium in reaction to a chemoattractant
emitted at a certain point (upper left corner).
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Introduction

In the simple situation where we only consider cells and a chemical
substance (thechemo-attractant), a model for the space and time
evolution of thedensityn = n(t, x) of cells and thechemical
concentrationc = c(t, x) at time t and positionx ∈ Ω ⊂ Rd has
been introduced byPatlak and Keller & Segeland reads

∂n

∂t
− div(∇ n − χ n∇c) = 0,

coupled with thechemoattractant equationfor c

∂c

∂t
− ∆c = g(n, c).
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Chemotaxis : mathematical theory ford = 2

(i) for ‖n0‖L1 small enough (8π), then there exist weak solutions.

(ii) these weak solutions propagateLp regularity.

(iii) for (
∫

|x|2 n0) is finite, then there is blow-upa time T ∗

(iv) (d = 2) with radial symmetry b n(t) → 8 πδ0(x) + R.

(v) (d > 2) various (stable or unstable) radial blow-up profiles.

aHerrero,Medina and Velazquez; Nonlinearity (1997), Dolbeault-Perthame; CRAS (2004)
bNagai; Adv. Math. Appl. Sci. (1995)
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Kinetic framework

We start from the transport equation for the distribution function
f = f(t, x, v)a

∂f

∂t
+

1

ε
v · ∇xf =

1

ε2
T (c, f).

The density of cellsn is given by

n(t, x) =
∫

V

f(t, x, v)dv.

and we assume herein that theturning operator is of the form

T (c, f) = T0(f) + εT1(c, f).

It is possible to derive rigorously the PKS model: large timeb.
aOthmer, Dunbar & Alt, JMB (1988), A. Stevens SIAM JAM
bHillen & Othmer SIAM JAM (2000); Chalubet al. (Monast.)
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Run and tumble process:

We assume that cells move, stop and suddently change their
directions.
T (c, f) describes this change of direction:

T (c, f) =
∫

V

K(v, v′, c) f(v′) dv′ −
∫

V

K(v′, v, c) dv′ f(v),

whereK(v, v′, c) is the rate of change of direction.
Now, we consider the following scaling:

∂f

∂t
+ v · ∇xf =

1

ε
T (c, f).
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Assumptions on the turning operators

• The turning operators T0 and T1 preserve the local mass∫
V

T0(f) dv =
∫

V

T1(c, f) dv = 0,

for any c ≥ 0.
• In addition, T0 conserves the population flux, that is,∫

V

T0(f) v dv = 0.

• For all n ∈ [0, +∞) and u ∈ Rd, there exists a unique function
Fn,u ∈ L1(V ; (1 + |v|)dv) such that

T0(Fn,u) = 0 ,

∫
V

Fn,u(v) dv = n,

∫
V

Fn,u(v) v dv = n u.

10



Hydrodynamic limits

Let f be a solution to thekinetic equation and set

n(t, x) =
∫

V

f(t, x, v)dv, n(t, x) u(t, x) =
∫

V

f(t, x, v) vdv.

We introduce f1 such that

ε f1(t, x, v) = f(t, x, v) − Fn(t,x),u(t,x)(v),

We integrate the KE overv ∈ V and use theconservation of mass

∂n

∂t
+ div(n u) = 0.

Owing to the conservation of momentumby the turning operator T0

∂(nu)

∂t
+div

(∫
V

v ⊗ v Fn,u(v) dv

)
=
∫

V

T1(c, Fn,u) vdv+O(ε).
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Next, we compute∫
V

v⊗v Fn,u dv =
∫

V

(v−u)⊗(v−u) Fn,u dv+n u⊗u, = P + n u⊗u

where the pressure tensor is given by

P (t, x) =
∫

V

(v − u(t, x)) ⊗ (v − u(t, x)) Fn(t,x),u(t,x) dv.

Then,
∂n

∂t
+ div(n u) = 0,

∂(nu)

∂t
+ div(n u ⊗ u + P ) =

∫
V

(v − u) T1(c, Fn,u) dv,

12



Cells are interacting together locally

Then, the turning operator T0 is like a BGK operator

T0(f)(v) = λ

(
n

ϑ(n)
F

(
v − u

ϑ1/2(n)

)
− f(v)

)
.

where ∫
V

F (v) dv = 1,

∫
V

v F (v) dv = 0.

⇒ P = n

∫
V

(v − u) ⊗ (v − u)F
(

v − u

ϑ1/2(n)

)
dv = nϑ(n) p,

Moreover, let T1 be such that

T1(c, f) =
∫

V

K1(v, v′, ∇c) f(v′) dv′−
∫

V

K1(v′, v, ∇c) dv′ f(v).
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Nonlinear Hyperbolic Model

From these assumptions onT1, we get the followingnonlinear model
∂n

∂t
+ div(n u) = 0,

∂(nu)

∂t
+ div(n u ⊗ u + nϑ(n)p) = −σ n u + n ϑ3/2(n) χ′∇c,

coupled with the concentration equation forc.

• already obtained bySerini & ala:

aSerini et al. EMBO J. (2003)
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What about entropy inequality?

For the PKS model ∂η̃
∂t

+ div G̃ ≤ 0, where

η̃ = n(log n − 1 − c) + c2

2
+ (∇c)2

2
,

G̃ = (n ∇c − ∇ n) (log n − c) − (n − c + ∆c) ∇c,

For the hyperbolic model whenχ(c) = c

∂η

∂t
+ div G = −σnu2 −

(
∂c

∂t

)2

≤ 0,

η = n(log n − 1) +
1

2
n u2 − nc +

1

2

(
c2 +

(
∂c

∂x

)2
)

,

G = n u (log n +
1

2
u2) − nu c −

∂c

∂t

∂c

∂x
.
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Cells are not interacting: Cattaneo model

Since cells are not interacting, the turning operator is linear

T0(f)(t, x, v) =
∫

V

(T0(v, v′)f(t, x, v′) − T0(v′, v)f(t, x, v)) dv′.

with V = S1

T0(v, v′) = (1 + C0v · v′)

The steady state is a linear combinationof 1,v1,...,vd

Fn,u(v) =

(
n + C1n

d∑
i=1

vi ui

)
,
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∂n

∂t
+ div(n u) = 0,

∂(nu)

∂t
+ ∇n = −σn u + n ∇c

• another model (Hillen and Othmera) can be also obtained using a
similar technique.

• linear with respect to (n, n u)

aOthmer-Dunbar Alt JMB (1988); Hillen M3AS (2002))
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Numerical Methods

Write the discrete version of the system in the following form

∆xi

d

dt
Ui(t) + Fi+1/2 − Fi−1/2 = ∆xi Si (1)

where∆xi denotes the mesh size∆xi = xi+1/2 − xi−1/2, and the
cell-average vector of discrete unknowns is

Ui(t) =

 ni(t)

ni(t) ui(t)

 ,

and Si is a “smart” approximation of the source.
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A first order well-balanced scheme

For a first order scheme, we get

Fi+1/2 = F(Ui(t), Ui+1(t)),

and you want to preservelog(ni) − χ(ci) = cte, ui = 0. Then
replacea Fi+1/2 by

Fi+1/2 = F(U−
i+1/2, U+

i+1/2),

The source term is discretized as (σ = 0.)

Si =
1

∆xi

 0

n−
i+1/2 − n+

i−1/2

 .

This ansatz is motivated by the balancing requirement. Indeed, when
steady state holds∇n = n χ′(c) ∇c = n e−χ(c)∇(eχ(c)).

aAudusse et al. SISC (2004), Bouchut Birkauser (2004), Gosse CNR report (2000)
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A first order well-balanced scheme

To ensure steady state conservation (with zero population flux), we
must choose

n−
i+1/2 = n+

i+1/2, ui = 0.

From this observation, we take

n−
i+1/2 = ni eχi+1/2−χ(ci)

and

n+
i+1/2 = ni+1 eχi+1/2−χ(ci+1).

Here we could choose for instance

χi+1/2 = max (χ(ci), χ(ci+1)) .
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Theorem: consistency and well-balancing

Consider a numerical fluxF for the homogeneous problem, which
preserves nonnegativity ofni(t). Then, the scheme with periodic
boundary conditions satisfies the following

(i) preserves thenonnegativity of ni(t)

(ii) preserves the steady state:log(ni) − χ(ci) = cte

(iii) is consistentwith the Hyperbolic system with a source term.

(iv) there is a discrete entropy property.
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Flux Splitting Scheme

To approximate the flux function, we use a flux splitting scheme

F (Ul, Ur) = F +(Ul) + F −(Ur), and F (U, U) = F (U)

In most applications the simple Lax-Friedrichs flux splitting

F ±
LF (U) =

1

2
(F (U) ± α U), α = max

m,U
|λm(U)|,

Local characteristic Lax-Friedrichs flux splitting and get a k-th
order approximation of the flux F̂i+1/2 via a WENO reconstruction.

F̂i+1/2 = F̂ +
i+1/2 + F̂ −

i+1/2,

where

F̂ +
i+1/2 = Ri+1/2

(
R−1

i+1/2 ( F (U) + α U )
)

i,r
.

22



Steady state preserving scheme

We perform a well-balanced reconstruction not of the densityn but
of the numerical fluxesF̂ ±

i+1/2

F +
i+1/2 = F̂ +

i+1/2

(eχ(c))i+1/2

(eχ(c))i,r

, F −
i+1/2 = F̂ −

i+1/2

(eχ(c))i+1/2

(eχ(c))i+1,l

,

with
(eχ(c))i+1/2 = max

(
(eχ(c))i,r, (eχ(c))i+1,l

)
and (eχ(c))i,r is a right hand sidek-th order approximation of eχ(c)

on the interval (xi−1/2, xi+1/2).
The source term is approximated as

Si =
1

∆x
ni e−χ(ci)

(
(eχ(c))i+1/2 − (eχ(c))i−1/2

)
.
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WENO reconstruction properties

1. The scheme is proven to beuniformly fifth order accurate
including at smooth extrema, and this is verified numerically.

2. Near discontinuities the schemebehaves very similarly to an
ENO scheme, namely the solution has a sharp and
non-oscillatory discontinuity transition.

3. The numerical flux has the same smoothness dependency on its
arguments as that of the physical fluxF (U). This helps in a
convergence analysis for smooth solutions and in steady state
convergence.

4. The approximation is self similar. That is, when fully discrete
with Runge-Kutta methods, the schemeis invariant when the
spatial and time variables are scaled by the same factor.
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What about for high order schemes?

THEOREM. Consider the Lax-Friedrich flux splitting schemeF
coupled with thek-th order ENO or WENO reconstruction for the
homogeneous problem. Then, this scheme with periodic boundary
conditions

(i) preserves the steady state for the ENO reconstruction :

log(ni) − χ(ci) = cte,

whereas it preserves steady state up to tε for the WENO
reconstruction.

(ii) is k-th order accurate with the system Hyperbolic system with
source term.

25



Numerical simulations

• Justification of the Well Balanced Algorithm in 1d.

• Illustration of chemosensitive movement.

• Network formation of Endothelial cells and early stage of blood
vessel formation.
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Tests 1: one dimensional model

Number of Finite Volume Well-balanced Finite Volume

points L1 error order L1 error order

50 1.21E-04 7.90E-05

100 5.86E-06 4.37 3.69E-06 4.42

200 4.00E-07 3.87 2.22E-07 4.05

400 2.00E-08 4.32 1.27E-08 4.13
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Figure 3: Accuracy test for well-balanced steady state resolution: cell
density n(t, x) (left) and population flux n(t, x) u(t, x) (right) at
time T = 20. Solid lines: WENO scheme with the well-balanced
reconstruction; dotted lines: WENO schemes with a centered approx-
imation of the source term.
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Simulation of the PKS model
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Simulation of the PKS model
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Simulation of the hyperbolic model
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Simulation of the hyperbolic model
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Simulation of the hyperbolic model
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Simulation of the hyperbolic model
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Network formation: early blood vessel formation
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Network formation: early blood vessel formation
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Conclusion and Discussion

• nonlinear hyperbolic model arises when we consider interactions
between cells.

• Blow-up of solution to the hyperbolic system: there is blow-up
for Euler-Poisson.

• Play with the pressure to prevent blow-up≡ play with the
diffusion on PKS

• the kinetic model does not blow-up!!

• Construct kinetic models describing cell interactions.
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