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We prove Strichartz estimates for the scalar wave equation on a
super-extremal Reissner-Nordström background.
Why?

◮ Why super-extremal Reissner-Nordström?

◮ Why the scalar wave equation?

◮ Why Strichartz estimates?

Super-extremal Reissner-Nordström because

◮ we are interested in Cosmic Censorship, and

◮ we are interested in modelling elementary particles. For
electrons e/m ≈ 1021.
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Why scalar waves?

◮ Some people (mostly cosmologists) like them.

◮ Linear electromagnetic/gravitational perturbations satisfy
wave equations, so we can hope to study stability.

◮ Scalar waves have worse decay properties than waves of higher
spin.
This happens because the ℓ = 0 spherical harmonic generally
has the slowest decay.

◮ There are no troublesome indices.

◮ People (mostly Wald2 and students) suggest well-posedness of
wave equations as a substitute for geodesic completeness.

2J. Math. Phys. 1980
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◮ Energy Conservation:

‖u(t)‖2
Ḣ1(R3)

+ ‖∂tu(t)‖2L2(R3) = ‖u(0)‖2
Ḣ1(R3)

+ ‖∂tu(0)‖2L2(R3)

More generally,

Es [u](t) = ‖u(t)‖2
Ḣs (R3)

+ ‖∂tu(t)‖2
Ḣs−1(R3)

is conserved. E1/2[u] is Lorentz invariant.

◮ Dispersive Estimates (L∞ decay):

‖u(t)‖L∞(R3) ≤ Ct−1
(

‖∇u(0)‖L1(R3) + ‖∂tu(0)‖L1(R3)

)
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◮ Strichartz Estimate:

‖u‖L4(R1+3) ≤ CE1/2[u]

There are other Strichartz estimates, but this is the only one
relevant to this talk.

One nice thing about this Strichartz is that it is Lorentz invariant.
Strichartz estimates, like dispersive estimates, can be used to prove
stability for non-linear wave equations, but Strichartz estimates are
often true in contexts where dispersive estimates fail.
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Scalar Wave Equation in Spherical Symmetry

Metric in isothermal coordinates:

gµνdx
µdxν = α(r)2

(

−dt2 + dr2
)

+ ρ(r)2
(

dϕ2 + sin2 ϕ dθ2
)

α and ρ to be specified later.
(Massless, Chargeless) Scalar Wave Equation:

gµνψ;µν = 0

or

∂2t ψ − 1

ρ2
∂r

(

ρ2∂rψ
)

− α2

ρ2
∆Sphψ = 0.
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Suppose we identify our space-time with Minkowski space in the
simplest possible way, i.e. (t, r , ϕ, θ) 7→ (t, r , ϕ, θ).
ψ satisfies some rather ugly equation, but

u = ρψ/r

satisfies

∂2t u − 1

r2
∂r (r

2∂ru)−
α2

ρ2
∆Sphu + V (r)u = 0.

The coefficient in front of ∆Sphu is α2/ρ2 rather than 1/r2, but
we can ignore that for spherically symmetric solutions.
Compared to the scalar wave equation in Minkowski space, there is
an additional scalar potential

V (r) = ρ′′(r)/ρ(r).
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For Reissner-Nordström,

ρ′(r) = α2 α =

√

1− 2m

ρ
+

e2

ρ2

in natural units, G = c = 1.
There are three cases to consider:

◮ If |e| < m, the sub-extremal case, then the quadratic above
has two real roots and the larger one represents a horizon.
The metric above is valid only outside that horizon.

◮ If |e| = m, the extremal case, then the quadratic has a double
root at ρ = m, which is again a horizon and the metric is valid
outside the horizon.

◮ If |e| > m, the super-extremal case, then there are no horizons
and the metric above is valid for all r > 0, but is highly
singular at r = 0.
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r2V (r) = −2

9
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Wait! Is the Equation Well Defined?

Our potential is like −2/9
r2

at the origin. This means our equation,
as written, doesn’t have a well defined evolution.
We want to think about our equation as

∂2t u + Au = 0

where A is a positive definite, self-adjoint operator.
Spectral theory will then give us a well defined evolution for the
initial value problem. Energy conservation will come for free.
We are forced by the problem to choose

Au = − 1

r2
∂r (r

2∂ru)−
α2

ρ2
∆Sphu + V (r)u,

but with what domain?
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For smooth functions u, v supported on compact subsets of
R
3 − 0, we have

◮ Positive Definiteness:

〈u,Au〉 ≥ 0 〈u,Au〉 = 0 =⇒ u = 0

◮ Symmetry:
〈Au, v〉 = 〈u,Av〉

Theorem (Von Neumann): Every symmetric operator has a
self-adjoint extension, i.e. there is a self-adjoint operator whose
domain of definition contains the domain of the original operator
and which agrees with the original operator in that domain.
Definition: A symmetric operator is called essentially self-adjoint if
it has only one self-adjoint extension.
Almost all symmetric differential operators appearing in
Mathematical Physics are essentially self-adjoint.
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Our A is not essentially self-adjoint. In fact, it’s as far from being
self-adjoint as it could be.3

There is an infinite dimensional family of inequivalent self-adjoint
extensions. Each one gives a different evolution. All satisfy our
differential equation.
We either give up, or we choose one.
Following Wald, we choose the Friedrichs extension.
This is defined by looking at the corresponding quadratic form,
using it (slightly modified) to define a norm on its domain, and
taking the completion with respect to that norm.
An alternate characterisation, due to Krein, is this: If AF is the
Friedrichs extension and AE is any other positive self-adjoint
extension of A then

u ∈ Dom(AF ) =⇒ u ∈ Dom(AE ) and 〈u,AFu〉 ≤ 〈u,AEu〉 .

3See Seggev, 2003.



BPST-Z

Now that we have a well defined problem, we can use a theorem
we proved earlier with Burq and Planchon:4

Let V ∈ C 1(R+) satisfy

◮ supr∈R+ r2V (r) <∞
◮ infr∈R+ r2V (r) > −1/4

◮ supr∈R+ r2 d

dr
(rV (r)) < 1/4,

let P = −∆+ V , and let PF be the Friedrichs extension of P .
Then there exists a C such that if

∂2t u + PFu = 0

then
‖u‖L4(R1+3) ≤ CE1/2[u].

4Indiana J of Math, 2004, but use Arxiv instead!
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What needs to be done?

There are two things to be checked, before we can apply the
theorem:

◮ We want a theorem with natural (in terms of the R-N metric)
norms on ψ, not the usual (Minkowski) norms on u.
For example, we need

‖ψ‖L4(M) ≤ C‖u‖L4(R1+3)

for some constant C .
Luckily,

‖ψ‖4
L4(M) =

∫

R1+3

(

αr

ρ

)2

|u|4

and αr
ρ is bounded.

◮ We need to check the three hypotheses on our V .
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We can eliminate one variable by scaling.
We still have nasty transcendental functions of the two variables
r/e and m/e whose zeroes we need to find.
Idea: Forget the transcendental relation between the two and treat
r/e and ρ/e as independent. That gives us an algebraic problem in
the three variables ρ/e, r/e and m/e.
Doesn’t quite work as written, but something very similar does, at
least for |e| ≥ 2m.



Algebra

Eventually, after much algebra, the problem reduces to one of real
algebraic geometry:
Is the curve

72x14 − (576 + 432y2)x13 + (1947 + 3552y2 + 1152y4)x12

− (3504 + 11988y2 + 10464y4 + 1440y6)x11

+ (3452 + 20360y2 + 38762y4 + 15384y6 + 720y8)x10

− (1536 + 16456y2 + 71800y4 + 66316y6 + 10536y8)x9

+ (2040y2 + 62966y4 + 143492y6 + 57803y8 + 2160y10)x8

− (−4608y2 + 8608y4 + 153832y6 + 154672y8 + 21648y10)x7

+ (−20100y4 + 48272y6 + 208760y8 + 83120y10 + 2760y12)x6

− (−36120y6 + 104440y8 + 151552y10 + 20824y12)x5

+ (−33769y8 + 109100y10 + 58958y12 + 1908y14)x4

− (−17900y10 + 62848y12 + 11680y14)x3

+ (−5530y12 + 20912y14 + 944y16)x2

− (−972y14 + 3888y16)x + (−81y16 + 324y18) = 0

compact?
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Note that each lattice point in the Newton polygon has a number
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Definition: The edge polynomial associated with an (oriented)
edge of the Newton polygon is the polynomial in one variable
whose coefficients are the numbers associated to the lattice points
in that edge, taken in order.
Theorem:5 The curve C = {(x , y) ∈ R

2 : p(x , y) = 0} is compact
if p is not divisible by x or y and none of its edge polynomials have
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Oddly, that question seems never to have been considered.
Definition: The Newton polygon of a polynomial p(x , y) in two
variables is the convex hull of the set of Z2 lattice points (k , l)
where the coefficient of xky l in p is non-zero.
Note that each lattice point in the Newton polygon has a number
attached, the corresponding coefficient in p.
Definition: The edge polynomial associated with an (oriented)
edge of the Newton polygon is the polynomial in one variable
whose coefficients are the numbers associated to the lattice points
in that edge, taken in order.
Theorem:5 The curve C = {(x , y) ∈ R

2 : p(x , y) = 0} is compact
if p is not divisible by x or y and none of its edge polynomials have
real zeroes.
Note that there is a classical algorithm for checking the existence
of real zeroes of polynomials in one variable, the Sturm test.

5Forum Mathematicum, 2007



So now what?
For the scalar wave equation in super-extremal
Reissner-Nordström,

◮ energy estimates are trivial, once you figure out how to get a
well-defined problem,

◮ Strichartz estimates, somewhat miraculously, are true, at least
for spherically symmetric data,

◮ dispersive estimates may or may not be true.
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For the scalar wave equation in super-extremal
Reissner-Nordström,

◮ energy estimates are trivial, once you figure out how to get a
well-defined problem,

◮ Strichartz estimates, somewhat miraculously, are true, at least
for spherically symmetric data,

◮ dispersive estimates may or may not be true.

This ought to be a good start in proving the stability of the
Reissner-Nordström solution if we knew how to formulate the
problem.
But is it really Reissner-Nordström we should be looking at?
Yes, if you’re convinced that linear Maxwell is correct even at small
scales.
Perhaps the correct equation is Maxwell-Born-Infeld, which has a
milder singularity.
There are some interesting new non-linear stability results for MBI,
by Speck.
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