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Goal of this work

Numerical schemes and asymptotic study as ε→ 0 for the
Gross-Pitaevskii equation

i∂tψ
ε =

1
ε
Hψε + f

(
|ψε|2

)
ψε (NLSε)

where the Hamiltonian H is the harmonic oscillator (x ∈ R
d )

H = −
1
2
∆+

1
2
|x |2

which has a discrete spectrum and f is a smooth function.

The term 1
εHψ

ε is a forcing term (in infinite dimension). As
ε→ 0, we are in a highly oscillatory regime.
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Motivation: study the dynamics of Bose-Einstein condensates
(BEC) in two asymptotic regimes.

Case 1: strong confinement

i∂tψ
ε = −

1
2
∆ψε +

|x |2

ε2 ψε + f
(
|ψε|2

)
ψε

Rescaling the space variable x = x ′

ε leads to (NLSε).

Case 2: long-time behavior in the weak interaction regime

i∂tψ
ε = −

1
2
∆ψε + |x |2ψε + εf

(
|ψε|2)

)
ψε

Rescaling the time variable t = εt ′ leads to (NLSε).
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A variant: highly anisotropic BEC

i∂tψ
ε = −

1
2
∆ψε +

(
ω‖x

2
1 + ω‖x

2
2 + ω⊥z2

)
ψε + f

(
|ψε|2

)
ψε

where either ω⊥ ≫ ω‖ (disk shaped condensate),
or ω‖ ≫ ω⊥, (cigar shaped condensate).

An adequate anisotropic scaling in (x1, x2, z) leads to

i∂tψ
ε =

1
ε
(−∂2

z + z2)ψε + (−∆x + |x |2)ψε + f
(
|ψε|2

)
ψε

or

i∂tψ
ε =

1
ε
(−∆x + |x |2)ψε + (−∂2

z + z2)ψε + f
(
|ψε|2

)
ψε
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A few references (in that context):

Bao, Markowich, Schmeiser, Weishäupl (M3AS 2005),
Ben Abdallah, FM, Schmeiser, Weishäupl (SIAM Math. Anal.
2005),
Ben Abdallah, Castella, FM (JDE 2008),
Carles, Markowich, Sparber (Nonlinearity 2008).

See also, in the context of fluid mechanics:

Grenier (JMPA 1997),
Schochet (JDE 1994),
Métivier, Schochet (JDE 2003).
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Rough analysis (and wrong approach)

For simplicity, d = 1 in what follows. It is known that:

1 The eigenvalues of H are made of the set
{

En = n +
1
2
; n ∈ N

}

2 The corresponding eigenfunctions hn(x), n ∈ N are
(explicitly) known to be products of the form

Hermite polynomial × Gaussian



beamer-tu-logo

First order averaging High order averaging Application to NLS

It is then rather tempting to

1 Project on the basis ψε(t , x) =
∑

n ψ
ε
n(t)hn(x), and write,

say if f (|ψ|2)ψ = |ψ|2ψ,

i∂tψ
ε
n(t) =

En

ε
ψε

n(t) +
∑

p,q,r

An,p,q,r ψ
ε
p(t)

∗ ψε
q(t)ψ

ε
r (t)

with

An,p,q,r =

∫

R

hn(x)hp(x)hq(x)hr (x)dx

2 Filter out the oscillatory term by introducing the new

unknown uε
n(t , x) = eit En

ε ψε
n(t , x).
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We then obtain an infinite, nonlinearly coupled system

i
d
dt

uε
n(t) =

∑

p,q,r

An,p,q,r eit
En+Ep−Eq−Er

ε uε
p(t)

∗ uε
q(t)uε

r (t).

of the form

d
dt

uε = g
(

t
ε
,uε

)
, g(τ,u) periodic in τ

where uε = (φε0, φ
ε
1, . . .).
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Two questions arise:
1 How to numerically average out the ODE

d
dt

uε = g
(

t
ε
,uε

)
?

Answer inspired by Chartier, Murua, Sanz-Serna for
ODE’s.

2 How to control the norms of uε and the nonlinear term g ?

It is not clear that the Sobolev smoothness of u∑
n nα|un|

2 < +∞ implies the smoothness of the sum
∑

n nα
∣∣∣
∑

p,q,r · · ·
∣∣∣
2
< +∞, because of the An,p,q,r ’s.

Answer inspired by Ben Abdallah, Castella, FM (functional
framework).
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The functional framework

The technique we adopt avoids the projection step on the χn’s
and introduces directly the filtered function

uε(t , x) = eit H
ε ψε(t , x).

The filtered function satisfies the equation

i∂tuε(t , x) = g
(

t
ε
,uε(t , x)

)
,

where g is now defined, for u = u(x), as follows:

g
(

t
ε
,u
)

= eit H
ε

(
f
(
|e−it H

ε u(x)|2
)

e−it H
ε u(x)

)
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The good Sobolev scale

We shall use the following space Bℓ for ℓ > d/2:

➤ ‖u‖2
Bℓ := ‖u‖2

Hℓ + ‖|x |ℓ u‖2
L2 , equivalent to ‖Hℓ/2u‖2

L2 .

➤ Bℓ is continuously embedded in L∞(Rd).

➤ If f ∈ C∞(R), then u ∈ Bℓ 7→ f (|u|2)u ∈ Bℓ is C∞ and
satisfies a tame estimate

‖f (|u|2)u)‖Bℓ ≤ Cf (‖u‖L∞)× ‖u‖Bℓ

Now, for all M > 0 and u ∈ Bℓ such that ‖u‖Bℓ ≤ M, we have
∥∥∥∥g
(

t
ε
,u
)∥∥∥∥

Bℓ

=
∥∥∥Hℓ/2eit H

ε f
(
|e−it H

ε u|2
)

e−it H
ε u
∥∥∥

L2
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➤ ‖u‖2
Bℓ := ‖u‖2

Hℓ + ‖|x |ℓ u‖2
L2 , equivalent to ‖Hℓ/2u‖2

L2 .

➤ Bℓ is continuously embedded in L∞(Rd).

➤ If f ∈ C∞(R), then u ∈ Bℓ 7→ f (|u|2)u ∈ Bℓ is C∞ and
satisfies a tame estimate

‖f (|u|2)u)‖Bℓ ≤ Cf (‖u‖L∞)× ‖u‖Bℓ

Now, for all M > 0 and u ∈ Bℓ such that ‖u‖Bℓ ≤ M, we have
∥∥∥∥g
(

t
ε
,u
)∥∥∥∥

Bℓ

=
∥∥∥eit H

ε Hℓ/2f
(
|e−it H

ε u|2
)

e−it H
ε u
∥∥∥

L2

(crucial: e−it H
ε and Hℓ/2 commute together)
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The good Sobolev scale

We shall use the following space Bℓ for ℓ > d/2:
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‖f (|u|2)u)‖Bℓ ≤ Cf (‖u‖L∞)× ‖u‖Bℓ

Now, for all M > 0 and u ∈ Bℓ such that ‖u‖Bℓ ≤ M, we have
∥∥∥∥g
(

t
ε
,u
)∥∥∥∥

Bℓ

=
∥∥∥Hℓ/2f

(
|e−it H

ε u|2
)

e−it H
ε u
∥∥∥

L2

(e−it H
ε is an isometry on L2)
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The good Sobolev scale

We shall use the following space Bℓ for ℓ > d/2:
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Hℓ + ‖|x |ℓ u‖2
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L2 .
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➤ If f ∈ C∞(R), then u ∈ Bℓ 7→ f (|u|2)u ∈ Bℓ is C∞ and
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‖f (|u|2)u)‖Bℓ ≤ Cf (‖u‖L∞)× ‖u‖Bℓ

Now, for all M > 0 and u ∈ Bℓ such that ‖u‖Bℓ ≤ M, we have
∥∥∥∥g
(

t
ε
,u
)∥∥∥∥

Bℓ

=
∥∥∥f
(
|e−it H

ε u|2
)

e−it H
ε u
∥∥∥

Bℓ

(equivalence of norms)
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)∥∥∥∥

Bℓ

=
∥∥∥f
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∥∥∥
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∥∥∥
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∥∥∥∥g
(

t
ε
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)∥∥∥∥
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=
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(
|e−it H

ε u|2
)
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ε u
∥∥∥
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≤ Cf ,M

∥∥∥Hℓ/2e−it H
ε u
∥∥∥

L2
= Cf ,M

∥∥∥Hℓ/2u
∥∥∥

L2
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The good Sobolev scale

We shall use the following space Bℓ for ℓ > d/2:
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Hℓ + ‖|x |ℓ u‖2
L2 , equivalent to ‖Hℓ/2u‖2
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➤ If f ∈ C∞(R), then u ∈ Bℓ 7→ f (|u|2)u ∈ Bℓ is C∞ and
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‖f (|u|2)u)‖Bℓ ≤ Cf (‖u‖L∞)× ‖u‖Bℓ

Now, for all M > 0 and u ∈ Bℓ such that ‖u‖Bℓ ≤ M, we have
∥∥∥∥g
(

t
ε
,u
)∥∥∥∥

Bℓ

=
∥∥∥Hℓ/2f

(
|e−it H

ε u|2
)

e−it H
ε u
∥∥∥

L2

≤ Cf ,M

∥∥∥Hℓ/2e−it H
ε u
∥∥∥

L2
= Cf ,M ‖u‖Bℓ
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Consequence: nonlinear analysis

This PDE can be treated by ODE techniques: Gronwall + the
above nonlinear estimates + fixed point theorem imply that the
Cauchy problem is well-posed on [0,T0] with T0 > 0 and

‖ψε(t , ·)‖Bℓ = ‖uε(t , ·)‖Bℓ ≤ const. (0 ≤ t ≤ T0),

and all nonlinear terms are well defined and uniformly bounded
in the space Bℓ

There remains to average out, in the space Bℓ, the equation

i∂tuε(t , x) = g
(

t
ε
,uε(t , x)

)
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The (first order) averaging result

Let uε solve

i∂tuε(t , x) = g
(

t
ε
,uε(t , x)

)

and let u solve

i∂tu(t , x) = gav (u(t , x)) , gav (u) :=
1
T

∫ T

0
g (τ,u)dτ

with the same initial data (here T is the period of g).
Then one has

sup
0≤t≤T0

‖uε − u‖Bℓ ≤ Cε.

Proof: write the Duhamel form of the equation satisfied by uε

and ”integrate by parts” in time.
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THE PROJECTED VERSION OF THE AVERAGED EQUATION

Recall that if u(t , x) =
∑

n un(t)hn(x), then in the cubic case

g(τ,u) =
∑

p,q,r

An,p,q,r eiτ(En+Ep−Eq−Er )uε
p(t)

∗ uε
q(t)uε

r (t).

Hence the averaged nonlinearity reads

gav (u) =
∑

p,q,r∈Λn

An,p,q,r uε
p(t)

∗ uε
q(t)uε

r (t).

where
Λn = {(p,q, r) : En + Ep − Eq − Er = 0}
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A NUMERICAL EXAMPLE IN DIMENSION 1

i∂tψ
ε = −

1
ε

(
1
2
∂2

xψ
ε +

1
2
(x2 − 1)

)
ψε + |ψε|2ψε

with an initial data on the first two Hermite functions

ψ(t = 0, x) = h0(x) + h1(x).

Two numerical methods:
➤ A direct method on (NLSε): Time Splitting Hermite

Pseudospectral method (see Bao et al) with ∆t = o(ε).
➤ A numerical integration of the averaged equation with

∆t = o(1).

i∂tun =
∑

q+r−p=n

An,p,q,r uε
p(t)

∗ uε
q(t)uε

r (t)

=
1

2π

∫ 2π

0
eiτ H

ε

(
|e−iτ H

ε u(t , x)|2e−iτ H

ε u(t , x)
)

dτ.
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ε = 10−2, representation of the modes uε
n(t)
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➤ Observation

Simulating only the limit model induces an intrinsic error of
order ε and can miss some interesting effects.

➤ Goal

Search for averaged equations at higher order and
associated numerical methods.
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Highly-oscillatory problems with periodic time-dependence

Let X be a Banach space on R. We consider highly oscillatory
problems in X of the form

d
dt

uε = g
(

t
ε
,uε

)
, uε(0) = u0 ∈ X

i.e. after reparametrization of time

d
dτ

uε = ε gτ (uε) , uε(0) = u0 ∈ X . (1)

➤ ε is a small parameter (inverse of a frequency).

➤ (θ,u) 7→ gθ(u) is given, smooth w.r.t. u ∈ X and 1-periodic,
continuous w.r.t. θ ∈ T ≡ [0,1].

➤ There exist T > 0, ε∗ > 0 and a bounded open subset
K ⊂ X such that, for all ε ∈]0, ε∗], (1) admits a unique
solution uε ∈ C1([0, T

ε ],X ) with uε(t) ∈ K for all t ≤ T
ε .
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Averaging for ODEs:

➤ Krylov and Bogoliubov (1934) : basic idea

➤ Bogoliubov and Mitropolski (1958) : rigorous statement for
second order approximation

➤ Perko (1969) : polynomial error estimates for the periodic
and quasi-periodic cases

➤ Neihstadt (1984) : exponentially small error estimates for
the periodic case

➤ Chartier, Murua and Sanz-Serna (2010-2012):
stroboscopic averaging and quasi-stroboscopic averaging
using B-series
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Related techniques for ODEs and PDEs:

➤ Wentzel-Kramers-Brillouin (1926): two-scale expansions in
quantum mechanics

➤ Bambusi, Bourgain, Grébert, Thomann, Villegas-Blas
(2003–2012): Birkhoff normal forms (for non-linear PDEs)

➤ Cohen, Hairer, Gauckler, Lubich (2003–2012): Modulated
Fourier expansions for ODEs and some Hamiltonian PDEs
(Fermi-Pasta-Ulam, wave equation, Schrödinger equation)

Textbooks:

➤ Lochak and Meunier (1988) : Multiphase averaging for
classical systems. With applications to adiabatic theorems

➤ Sanders, Verhulst and Murdock (2007) : Averaging
methods in nonlinear dynamical systems
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The equations of stroboscopic averaging

The purpose of averaging is to find a 1-periodic smooth change
of variable, ε-close to the identity,

(θ,u) ∈ T× K 7→ Φε
θ(u) ∈ X

such that the solution of d
dτ uε = εgτ (uε) takes the form

uε(τ) = Φε
τ ◦Ψ

ε
τ (u0),

for u0 in some open set U ⊂ X , and where Ψε
τ is the flow map

of an autonomous differential equation on X :

d
dτ

Ψε
τ (u0) = εGε (Ψε

τ (u0)) .

For stroboscopic averaging, one requires in addition Φε
0 ≡ id .
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Let us now formally seek the equations satisfied by Φε
θ and Ψε

τ .
By differentiating uε(τ) = Φε

τ ◦Ψ
ε
τ (u0) w.r.t. τ we get

duε(t)
dτ

=
∂Φε

τ

∂τ
(Ψε

τ (u0)) +
∂Φε

τ

∂u
(Ψε

τ (u0))
dΨε

τ

dτ
(u0).
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Let us now formally seek the equations satisfied by Φε
θ and Ψε

τ .
By differentiating uε(τ) = Φε

τ ◦Ψ
ε
τ (u0) w.r.t. τ we get

εgτ (uε(τ)) =
∂Φε

τ

∂τ
(Ψε

τ (u0)) + ε
∂Φε

τ

∂u
(Ψε

τ (u0))Gε (Ψε
τ (u0)) .
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Let us now formally seek the equations satisfied by Φε
θ and Ψε

τ .
By differentiating uε(τ) = Φε

τ ◦Ψ
ε
τ (u0) w.r.t. τ we get

εgτ (Φ
ε
τ ◦Ψ

ε
τ (u0)) =

∂Φε
τ

∂τ
(Ψε

τ (u0))+ε
∂Φε

τ

∂u
(Ψε

τ (u0))Gε (Ψε
τ (u0)) .
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Let us now formally seek the equations satisfied by Φε
θ and Ψε

τ .
By differentiating uε(τ) = Φε

τ ◦Ψ
ε
τ (u0) w.r.t. τ we get

εgτ (Φ
ε
τ ◦Ψ

ε
τ (u0)) =

∂Φε
τ

∂τ
(Ψε

τ (u0))+ε
∂Φε

τ

∂u
(Ψε

τ (u0))Gε (Ψε
τ (u0)) .

Taking u0 = Ψε
−τ (u) and replacing τ by θ ∈ T we obtain

Transport equation

∂Φε
θ

∂θ
(u) + ε

∂Φε
θ

∂u
(u)Gε(u) = εgθ (Φ

ε
θ(u)) .
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Let us now formally seek the equations satisfied by Φε
θ and Ψε

τ .
By differentiating uε(τ) = Φε

τ ◦Ψ
ε
τ (u0) w.r.t. τ we get

εgt (Φ
ε
t ◦Ψ

ε
t (u0)) =

∂Φε
t

∂t
(Ψε

t (u0)) + ε
∂Φε

t

∂u
(Ψε

t (u0))Gε (Ψε
t (u0)) .

Taking u0 = Ψε
−t(u) and replacing t by θ ∈ T we obtain

Transport equation

∂Φε
θ

∂θ
(u) + ε

∂Φε
θ

∂u
(u)Gε(u) = εgθ (Φ

ε
θ(u)) .

If fθ(u) is periodic with respect to θ, then 〈f 〉 will be its average:

〈f 〉 (u) :=
∫ 1

0
fθ(u)dθ.
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Taking averages in θ of both sides of the transport equation:

∂〈Φε〉

∂u
(u) Gε(u) = 〈g ◦Φε〉 (u) .

Assuming that ∂〈Φε〉
∂u (u) is invertible, the outcome are the

Main equations of averaging

(i)
d
dτ

Ψε
τ (u0) = εGε (Ψε

τ (u0))

(ii) Gε(u) :=
(
∂〈Φε〉

∂u
(u)
)−1

〈g ◦ Φε〉 (u),

(iii)
∂Φε

θ

∂θ
(u) + ε

∂Φε
θ

∂u
(u)
(
∂〈Φε〉

∂u
(u)
)−1

〈g ◦Φε〉 (u) = εgθ ◦ Φ
ε
θ(u)
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Solving these equations: find a fixed-point of the operator

Γεθ(ϕ)(u) = u+ε
∫ θ

0

(
gξ◦ϕξ(u)−

∂ϕξ

∂u
(u)
(
∂〈ϕ〉

∂u
(u)
)−1

〈g ◦ ϕ〉 (u)
)

dξ

in an “appropriate subspace” of periodic functions.

However: Γε is non-local, non-linear, and this equation can be
solved only up to an exponentially small error term in ε.

Picard iteration is adopted here:

Construct a sequence of analytic functions

Φ
[0]
θ = id , Φ

[k+1]
θ = Γεθ(Φ

[k ]
θ ), k = 0,1,2, . . . ,n,

at the price of a gradual thinning of their domains of definition
(due to the loss of derivatives in u).
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Contraction property of the mapping

From
Γεθ(ϕ)− Γεθ(ϕ̃) = O(ε),

one deduces the ”convergence” property

Φ
[k+1]
θ − Φ

[k ]
θ = O(εk ).

At this point, we have “solved” the equation for Φε and we can
consider the associate sequence of vector fields

G[k ](u) :=

(
∂〈Φ[k ]〉

∂u
(u)

)−1

〈g ◦ Φ[k ]〉(u)

From polynomial to exponential errors: optimal truncation

(nε + 1) = ⌊ε0/(2ε)⌋ , Φ̃ε
θ = Φ

[nε]
θ and G̃ε = G[nε].
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Theorem

For small enough ε > 0, the following holds. Introduce Ψ̃ε
t the

t-flow of the autonomous diff. equation

dU
dt

= εG̃ε(U),

then the solution uε(t) of the IVP satisfies

∀τ ∈ [0,T/ε],
∥∥∥uε(τ)− Φ̃ε

τ ◦ Ψ̃
ε
τ (u0)

∥∥∥
XC

≤ C exp
(
−

C
ε

)
.

Note: due to the choice of stroboscopic averaging Φ̃ε
0 = id , one

has Φ̃ε
τn

= id at the stroboscopic times τn = n so

∥∥∥uε(τn)− Ψ̃ε
τn
(u0)

∥∥∥
XC

≤ C exp
(
−

C
ε

)
.
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In the linear case

gθ(u) ≡ Aθu,

where Aθ is a bounded linear operator on X , our iterative
procedure actually converges and

uε(τ) = Φε
τ ◦Ψ

ε
τ (u0).
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A recipe to compute the averaged equations

1 Implement the pre-Lie product h = f ⊳ g of the fields ft ,gt

ht(u) =
∫ t

0

(
∂fs(u)
∂u

gt(u)−
∂gt(u)
∂u

fs(u)
)

ds.

2 Compute recursively the terms of the expansion

εRε
t (u) = εR[1]

t (u) + ε2R[2]
t (u) + ε3R[3]

t (u) + · · ·

by solving the equation

εg = εRε+
ε2

2
Rε

⊳Rε+
ε3

3!
Rε

⊳(Rε
⊳Rε)+

ε4

4!
Rε

⊳(Rε
⊳(Rε

⊳Rε))+· · ·

3 Compute the averages Gi(u) = 〈R[i ]〉(u).

First terms read G1 = 〈g〉, G2 = −1
2

〈∫ t
0 [gs(u),gt(u)] ds

〉
, · · ·
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Geometric aspects

X ⊂ Z are Hilbert spaces, equipped with (·, ·)X and (·, ·)Z and
X is dense in Z (e.g. X = Bℓ(Rd ) and Z = L2(Rd )).

Definition and assumption

gθ is assumed to be Hamiltonian: ∃ a bounded inv. linear map
J : X → X , skew-symmetric w.r.t. (·, ·)Z , and an analytic Hθ, s.t.

gθ = J−1∇uHθ.

A smooth map Φθ is said to be symplectic if

∀(θ,u, v ,w) ∈ T×K×X 2, 〈J∂uΦθ(u)v , ∂uΦθ(u)w〉Z = 〈Jv ,w〉Z .
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Theorem

Φ
[n]
θ and G[n] are respectively symplectic and Hamiltonian up to

εn+1-perturbation terms: for all u ∈ K , v ,w ∈ X, we have
(

J∂uΦ
[n]
θ (u)v , ∂uΦ

[n]
θ (u)w

)
Z
= (Jv ,w)Z +O(εn+1‖v‖X ‖w‖X ).

G[n](u) = J−1∇uH [n](u) +O(εn+1),

where H [n] is defined by

H [n](u) =
〈

Hθ ◦ Φ
[n+1]
θ (u)

〉
−

1
2ε

〈(
J∂θΦ

[n+1]
θ (u),Φ[n+1]

θ (u)
)

Z

〉
.

Remark:

This implies that each term in the ε–expansion of G[n] is
Hamiltonian.
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Assume that the exact solution admits an invariant (possibly
depending on ε) Qθ : T× X → R:

∀u ∈ K , ∀θ ∈ T,
∂Qθ

∂θ
(u) + ε

∂Qθ

∂u
(u) gθ(u) = 0.

For instance, Q(u) = ‖u‖2
Z is an invariant if, for all u, one has

(gθ(u),u)Z = 0: this is the case in our application to NLS.

Theorem

The change of variable Φ
[n]
θ and the averaged vector field G[n]

satisfy the relations

∀u ∈ K , ∀θ ∈ T, Qθ(Φ
[n]
θ (u)) = Q0(u) +O(εn+1),

(∂uQ0)(u) G[n](u) = O(εn).
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The main result

Theorem

For small ε, there exist smooth Gε(u) and Φε
θ(u) with Φε

0 = id,
such that for all ‖ψ0‖Bℓ ≤ M, the NLS solution satisfies

sup
0≤t≤T

∥∥∥ψε(t)− e−it H
ε Φε

t/ε

(
ψ̃ε(t)

)∥∥∥ Bℓ ≤ C exp
(
−

C
ε

)
,

where ψ̃ ∈ C1([0,T ],X ) solves the autonomous equation

∂ψ̃ε

∂t
= Gε(ψ̃ε), ψ̃ε(0) = ψ0.

Moreover, Gε(u) = J−1∇Hε(u), and if

H(ψ) =
1
2
(Hψ,ψ)L2 +

ε

2

∫
F
(
|ψ|2

)
(t , x)dx ,

then for t ≤ T ,

‖ψ̃ε(t)‖2
L2 = ‖ψ0‖

2
L2 and H(ψ̃ε(t)) = H(ψ0) +O(e−C/ε).
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Numerical experiments

To design high order numerical methods, do not write explicitely
the averaged equation (its form is in general too complicated !)

Stroboscopic Averaging Method (Chartier, Murua, Sanz-Serna):

Simulation of the autonomous averaged equation, using
micro-integrations in order to compute approximatively the
vector field.
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The idea is to solve the averaged equation at two levels, in the
spirit of Heterogeneous Multiscale Methods:

➤ Approximate the averaged vector field G by central
differences of the form

G(U) ≈
1

4πε
(S2πε(U)− S−2πε(U))

with a numerical method with constant stepsizes
(micro-steps δt). Here we have denoted by St(u) the
solution of the highly-oscillatory equation

d
dt

u = g
(

t
ε
,u(t)

)
, u(0) = U.

➤ Solve the averaged equation by a numerical method with
possibly variable stepsizes (macro-steps ∆t).
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More precisely, let us choose for instance

➤ fourth order (in time) Time Splitting Hermite
Pseudospectral method for the micro-steps,

➤ a fourth-order Runge-Kutta method for the macro-steps,

➤ a fourth-order interpolation method for the calculation of
the averaged field.

Then one can bound the error formally by

error = O

(
ε4 + (∆t)4 + ε

(
δt
ε

)4
)
.

Recall that the micro integrations are done on intervals of size
O(ε). The cost of the method does not increase as ε→ 0.
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Accuracy curves for the Stroboscopic Averaging Method
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ε = 10−2, representation of the modes uε
n(t)
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ε = 10−2, representation of the modes uε
n(t)
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Thank you for your attention !
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