2. RESEARCH GOALS AND RESEARCH METHODS

The main goal of this USP project is the development of mathematical models and computa-
tional methods and their application to computer simulations in collaboration with partners
in quantum physics, quantum chemistry and quantum electronics. The similarities in mathe-
matical structures of models in different application areas allow to develop new methods in a
general setting. The 2 “main themes”, Nonlinear Schrodinger equations and (quantum) Boltz-
mann equations are somewhat linked by “kinetic formulations” of PDEs and in particular by
the Wigner transform that maps between the physical space of NLS (and macroscopic models
like (quantum) fluid dynamics) and the “phase space” of kinetic equations. The inclusion of a
“collision operator” in the Wigner equation, which yields what can be called “quantum Boltz-
mann equations” in the strict sense of kinetic equations, is a challenging long term goal both
from the modeling and the numerical point of view.

The approximation of the numerically intractable linear “N-body Time Dependent Schrédinger”
(N-TDS) equation by (systems of) nonlinear one-particle Schrodinger equations yields a large
variety of models from the “Multi-Configuration Time Dependent Hartree-Fock” (MCTDHF)
method to “Time Dependent Density Functional Theory” (TDDFT).

The particular research topics/goals are :

(i) Numerical analysis of MCTDHF, e.g. the proof of convergence of solutions of MCTDHF to
solutions of N-TDS for increasing number of configurations with N fixed, related to the proof
that this method has better convergence properties than a simple Galerkin method with fixed
basis functions. Improved numerical algorithms for MCTDHF. Simulations for problems in
photonics and quantum chemistry.

(ii) Numerical methods for TDDFT, including relativistic and current dependent TDDFT in
models like the Dirac-Kohn-Sham system coupled to Maxwell equations. Simulations for prob-
lems in material science (e.g. ultrafast spectroscopy, magnetic switches).

(iii) Numerical simulations for NLS in various contexts

a) Simulation of Blow-up phenomena in focusing NLS

b) Bose-Einstein Condensates (Gross-Pitaevskii equation)

c¢) KP equations

d) Pushing the threshold in semiclassical computations for Schrédinger type equations, also
using and comparing to WKB methods and Bloch decomposition methods.

(iv) The formulation and numerical simulation of quantum transport models including electron-
phonon interaction which yields a class of “quantum Boltzmann equations”. This involves a
systematic simplification procedure starting from a full quantum mechanical description of the
electron-phonon system including the influence of the crystal lattice. Also we shall deal with
the numerics of approximate models like “quantum Fokker-Planck equations”. The recent work
on SHE models (Spherical Harmonic Expansions) related to quantum entropy models shall be
exploited for improved numerical algorithms.

(v) Contribution to the development of efficient numerical approaches for kinetic transport mod-
els. In particular, stochastic particle methods based on cubature in path space could provide an
improvement of standard Monte Carlo methods. The corresponding theory, recently developed
for stochastic processes based on Brownian motion will be extended to Poisson jump processes.

As a method/tool for (i,ii, iii) it should be noted that the currently used simulation code for
NLS, developed by Markowich, Bao and Jin (essentially a time splitting spectral method), has
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been increasingly extended to a universal tool for all sort of generalized NLS. Stimming has
developed a parallelized version performing very well on the Schrodinger IT and IIT machines of
the ZID of the Univ. Wien, allowing for semiclassical simulations in 3-d (up to 1000 gridpoints
in each spatial direction).

Despite its advantages, however, this code shall be replaced by a new NLS solver (using adaptive
grid redistribution) at the end of this project, including a parallelized version.

2.1. ad (i) : MCTDHEF. It is an important problem in quantum physics and quantum chem-
istry to find numerically tractable approximations of the “exact” many-body problem of non-
relativistic quantum dynamics of N interacting electrons (and M nuclei that we lump into the
“external potential”). In the non-relativistic case one would ideally like to solve the N-body time-
dependent linear Schrodinger equation (N-TDS) with Coulomb potential and a time-dependent
external potential V' (r;,t), which reads

9 -
iV =Y ( YN V(rj,t)\lf> + > Wy - v
j=1 1<j<k<N
in atomic units. Here ¥ = W(ry,ry,...,ry), and r; € R? denotes the position coordinates of

the j** particle. The binary interaction potential W is typically given by the Coulomb potential
Wl —rl) = 5

Although (1) is a linear PDE, it scales computationally in an exponential way with increasing
number of particles which makes it practically impossible to compute solutions directly for

systems with more than very few electrons.

To avoid this problem, often (coupled systems of) nonlinear Schrodinger equations for several
single-electron “orbitals” are used in practice. One way to obtain such simplified models from
(1) is by “variational approximation”. This technique produces the time-dependent Hartree-
Fock (TDHF) or multiconfiguration time-dependent Hartree-Fock (MCTDHF) sytems, and large
variety other possibilities [42]. A different approach is time-dependent density functional theory
(TDDFT) which produces the time-dependent Kohn-Sham system [46] and [1].

To illustrate the variational method we consider the 2-particle MCTDHF-ansatz

(1) U(wi, o) = Y ajd(w)du(s),

J.k=1
where {¢1, ¢a,...,¢,} is an orthonormal set of n > 2 spin-orbitals. The coefficients satisfy
ar; = —aji so that U is antisymmetric, thus obeying Pauli’s exclusion principle, and 3 |a;|? = 1
to ensure | V]| = 1.

The Dirac-Frenkel variational principle yields a system of ordinary differential equations for
the coefficients a;j,, coupled to a system of partial differential equations for the spin-orbitals ¢;

which reads in vector notation for ¢ = (¢1, éa, . .., dn)”
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Here A is the antisymmetric coefficient matrix and I' = AA”. P is the projection onto the
subspace spanned by the orbitals ¢;, V;(¥) denotes the vector (Vi (¥),...,Vy,(¥))", where
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To calculate numerical solutions of the MCTDHF equations is not trivial, since it requires
the solution of a nonlinear system of ODEs for the coefficients a;i(t) coupled to the evolution
equations for the “orbitals” ¢;(r,t).

In order to solve the MCTDHF equations (as well as the TDHF equations) we currently use the
time-splitting spectral scheme which was originally developed for the cubic NLS [2] and which
has been proven to be a very efficient tool for very general classes of NLS (e.g. [1], [9]).

Using Born von Karman periodic boundary conditions on a sufficiently large domain of cal-
culation fits well with the trigonometric spectral method for the free evolution that is split in
time from the nonlinear potential part that yields an ODE that is solved by a fourth order
Runge-Kutta scheme.

Clearly, these methods are far from being optimal. Our goal for MCTDHF is to develop new
efficient numerical methods for the solution of system of equations like (2), (3) and to perform
numerical tests to study systematically how the (MC)TDHF models perform in the context
of computationally feasible simple problems, compared to the linear N-particle Schrodinger
equation.

It is basically impossible to estimate “a priori” which of the models in the hierarchy is “better”
for the calculation of a certain quantity - for example it is well known that sometimes the simple
Hartree approximation gives better results than the more sophisticated Hartree Fock equation,
especially when “correlation” effects play a role that are ignored by definition in the TDHF
method. (cf e.g. [5] and [25]).

Clearly, MCTDHF is the canonical way to improve the TDHF method and should, with in-
creasing number of configurations, converge to the solutions of the N-SE.

Let us remark that for MCTDHF many basic mathematical questions are open, starting with
existence of unique global solutions for the Coulomb case (cf. [35], [59], [6]) because of an
intrinsic problem of loss of rank of the density matrix after finite time (cf a interesting related
recent result on ”low rank approximations” of Lubich et al. [36]. Such analytical studies will
have importance for the numerical algorithms.

2.2. ad (ii) : TDDFT. Density functional theory is a different (but related) approach to
replace (1) by simpler nonlinear “one particle” models. It consists of approximating (1) by
a system of electrons with self-consistently determined potential fields which model the in-
teractions. Time-dependent density functional theory (TDDFT) is based on analogues of the
fundamental Hohenberg-Kohn Theorem and variational principle that were first expounded in
[54] and leads to the time-dependent Kohn-Sham system

(4) 2 6,(0.0) = [—5A+ Vicslol(@.)] 6.
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where the Kohn-Sham potential is defined as
Vislpl(z,t) = Vo(z, 1) + Vilpl(z, 1) + Vxclpl(x, 1) |
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and the density p(z,t) depends on the Kohn-Sham orbitals p(z,t) = Zjvzl |;(z,t)|* . Here Vo
is an external potential, Vi [p|(x,t) is the Hartree interaction potential and Vxc[p|(x,t) is the
exchange-correlation potential.

One of the principal weaknesses of DFT as such is that the functional Vxc[p] is generally
unknown, and one is forced to make a heuristic ansatz (based on a guess more or less guided
by insight into the physics) to be plugged into (4). For the time dependent case the functional
depends also on the initial data - i.e. in general for each different initial density matrix a
different functional is necessary. Moreover, the unknown dependence of Vkg[p(-,-)](x,t) on the
time-dependent density p(x,t) is probably very complicated : Causality of Vg can be assured
by deriving Vig from a proper action functional, but Vig will still be nonlocal in time and
space ([24]).

In the stationary theory, the following formulations exist today:

e basic DFT for time-independent, non-relativistic system yielding Vx¢/[p](z)

e spin polarized density functional theory with the density n (r) and the magnetization
density m (r) as basic quantities.

e Current density functional theory which still uses a Schrodinger-type Hamilton operator
but considers the density and the current density operators as the fundamental quantities

e A relativistic density functional theory (RDFT) using the Kohn-Sham-Dirac equations,
here there are open questions remaining about an approximative form of the Dirac equa-
tion which couples the magnetic field to the spin current only. This approximation is
widely used in physics but recently has been criticized for its missing terms to be more
relevant. For the general form of the Kohn-Sham-Dirac equation there are still questions
remaining regarding the use of a proper XC functional for the vector potential.

In the time-dependent theory the choice of the appropriate functional is largely open, but there
are as well some already developed methods. One of our goals is to perform reliable numeri-
cal simulations for a detailed comparison of the different already existing TDDFT “exchange-
correlation functionals” in order to obtain further insight in the applicability of TDDFT to
various physical problems. For the case of spin polarized DFT, current DFT, or even relativis-
tic DF'T, new functionals have to be found and applied.

A simulation code for Nonlinear Schrédinger type equations exists already [1] which is applicable
to a wide family of model equations. An extensive adaptation of the algorithm is necessary to
include magnetic fields and the Spin-dependent cases. The artificial boundary conditions present
problems for unstable simulations and some other treatment than the Born-Von Karman method
will be needed, for example a PML-method.

In the long term it will be necessary to employ geometry-specific Multi-Grid methods to enhance
performance and accuracy of simulations.

An important task is the extension of the above described mean field quantum models like TDHF
to the “relativistic regime”. This includes both relativistic corrections to the TDDFT/TDHF
equations as well as a fully relativistic setting relying on nonlinear Dirac type models. The
numerical treatment of such systems is itself a notable task. Quite recently scientific progress
has been achieved in this area: On the one hand several analytical results concerning asymptotic
limits of the so-called “Maxwell-Dirac system” have been achieved by the proponents of this
USP in [11, 14, 39, 56]. This is a mean field system replacing the classical Hartree (-Fock) model
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i.e. a nonlinear Dirac equation for the electron-positron 4-spinor, coupled to the Maxwell system
for the self-consistent (electromagnetic) fields V, A;x. Additionally one may take into account
external electromagnetic potentials V', As*. Additionally to the above mentioned analytical
studies there is recent work of Markowich, Sparber et al. on a numerical treatment of this
system in [29]. We plan to adapt the code of [29] for the use on parallel architecture and extend
it to include a Kohn-Sham-Dirac system.

The main drawback of the Maxwell-Dirac system is its lacking rigorous derivation of an under-
lying quantum field theory of electrodynamics. Indeed one may argue that the Maxwell-Dirac
system should better be replaced by the so-called “Bogoliubov-Dirac-Fock system”. This model
has been recently derived from first principles in [33] and further studied in [30, 31, 32]. It pro-
vides a more natural description of the electrons and positrons as well as their (self-consistent)
interactions (in Coulomb Gauge). Moreover, interaction with the vacuum background is taken
into account and one is provided a positive definite energy functional, an important advan-
tage in comparison to the Maxwell-Dirac system. Finally it is known that the non-relativistic
limit of the Bogoliubov-Dirac-Fock system yields the above mentioned Hartree-Fock equations,
which clearly provides a first link between this relativistic systems and the more classical mean
field models based on Schrodinger type equations, as it has been obtained for the “simple”
Dirac-Maxwell model by Mauser et al. [13, 14].

2.3. ad (iii): NLS. This is somewhat the central topic of this project where we deal with
several classes of NLS type equations and applications in different contexts, partly connected
to topic (ii) and (iv) :

a) Simulation of “blow up” phenomena of NLS
Consider the following class of focusing NLS:

i0u + Au = —\u[*u , U= = U -

A local nonlinearity as in this equation appears in DE'T models like, for example, the Schrodinger-
Poisson-Xa equation.

It is well known that if ¢ > 2, a H'-solution may blow up in finite time 7™, i.e. ||u||z — oo for
t — T*, hence no existence for ¢ > T™*. This phenomenon is a source of many open questions,
and research on this field has been going on for a long time, with some recent breakthroughes
from the analysis point of view (F. Merle et al), (see for example [53], [58], [50]) yet many
questions are still open. It is known that L2-concentration takes place at blowup, i.e. positive
L?-mass concentrates at a finite set of points or a zero measure set. Most of the theoretical
effort so far has been put on the question of self similarity, and finding possible blow-up pro-
files and blow-up rates. The “Townes Soliton” has long been known to be a possible blow-up
profile. Recently it has been shown that blow-up is also possible on a ring-shaped profile [23].
Self-similar solutions known so far are unstable in general, and consequently also the related
blow-up rates.

On the other hand little is known about the time 7™ at which blow-up occurs and ways to
relate it, for example, to parameters in the equation and initial data. In fact, this question
when the blow-up starts is much more interesting for the applications than the precise blow-up
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profile. Since analytical results are mostly out of reach, this problem of studying blow-up times
numerically (and phenomena like “multiple blow-up”) is one of the most interesting problem
of scientific computing in the field of NLS. To have reliable simulations is interesting both for
applications and for the advancement of the theory. Current numerical studies of blow-up led by
the proponents [10] are very promising. They show that in contrast to common conjectures the
blow-up time does not decrease monotonously with respect to a varying scale A of the nonlinear
term. The simulations are verified by comparison of simulations with two completely different
codes: the time splitting spectral scheme developed in Vienna and a finite difference relaxation
method developed in Toulouse/Lille.

New adaptive methods are necessary in order to also resolve the blow up profiles. The Blow-Up
“Lens” transform [44], for example, is reliable close to blowup, but it is not clear what happens
away from blowup and it is not possible to treat multi-point blowup with this method. A self-
adaptive grid refinement would be a very promising approach, the drawback there is that this
does not allow for application of other than the most simple , i.e. explicit, numerical methods
for the equations.

Further numerical studies are needed e.g. to understand interaction of self-focusing with dis-
persing or other effects and to address questions like finding a priori blow-up times and “places”.
Furthermore one would like to know if other geometries than points or circles are possible. Also
it would be interesting to quantify for given data how much of the L?-charge will enter into
collapse. In this context a most interesting point is the possibility to continue the part of the
solution that does not collapse after the blow-up time, in the spirit of [17].

b) PDE Models of Bose Einstein Condensates

In the context of NLS models for Bose-Einstein distributions several results, aiming in different
directions, have been achieved by the proponents. On the one hand the rigorous derivation
of lower dimensional NLS in situations where there is a strong confinement in one or two
dimensions are given in [8] and numerically studied in [4] (in the latter work one allows for
more general initial data). The situation of BECs in so-called “optical lattices”, modeled by a
periodic potential, i.e.

(6) i) = —%Aw V@)W + U@+ all?, acR,

where V(x+7) = V(z), Vo € R3, v € T ~ Z? (the lattice), is addressed in [19] and [55]. To this
end rigorous semi-classical asymptotics and effective mass theorems are established, the latter
yielding an equation of the form

@ 0 = —5 (M) + U + 5° |,

as used in the physics literature (see [52]). Here we denote by M* = D2E,, (kg), the effective
mass tensor, i.e. the Hessian matrix of the nth Bloch energy band E,(k), n € N, induced by
the lattice potential V', k* € R is an effective coupling constant and U some given non-periodic
(possibly confining) potential.

Also a new numerical algorithm to study such problems, i.e. (linear) Schrodinger type equations
with periodic potentials is proposed in [28]. It is shown there, that this new Bloch-decomposition
based algorithm is superior to the standard time-splitting schemes in the sense that the same
accuracy can be achieved using much fewer time-steps and a coarser spatial grid. As a follow-up
work we currently extend this new numerical method to nonlinear Schrodinger equations too,
focusing on nonlinearities of different strength in particular.
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c) KP equation

A new branch of research which is connected to the above has been started in [34]. There
a nonlinear dispersive wave equation, namely the “Kadomtsev-Petviashvili equation” (KP) is
studied numerically. This 2 + 1 dimensional equation, given by

(8) O (Ot + w0 Optt + Opgatt) + A0yyu =0, A= £1,

is formally obtained as a model for matter wave pulses in BECs as well as for sound waves
ferromagnetic media and also in the description of two-dimensional shallow water waves (thereby
generalizing the celebrated “Korteweg-de Vries equation”). A formal asymptotic analysis given
in [34] connects the KP equation with a NLS of Davey-Stewartson type. Indeed the small
dispersion limit of this model shares several similarities with the semi-classical limit for NLS.
We expect to continue our studies of the KP model, aiming for establishing numerically different
qualitative properties, in the nearby future.

d) Semiclassical limits of NLS
We consider the NLS with a “small parameter” e that typically also enters as a scale of oscilla-
tions in the initial data 97 :

2
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The “homogenization” limit of € — 0 in this NLS corresponds to a “(semi)classical limit” of
vanishing scaled Planck constant or to a “high wave number limit” in nonlinear optics, where
such NLS is obtained as the paraxial approximation of the Helmholtz equation.

The physically interesting quantities like the “density” n = [1)¢|? are quadratic in 1¢. Since
we are in the regime of weak limits (concentrations and oscillations), the calculation of such
quadratic quantities does not commute with the limit, of course.

Wigner transform methods have proven to be a very good tool for analytical results for such
“semiclassical limits” : a general theory for wide classes of linear problems was given in [21].
Also weakly nonlinear problems of Schrodinger-Poisson type could be successfully tackled e.g.
[60] and [12] where the setting is in a crystal which is relevant for semiconductor modeling. Such
kind of results have been used for theoretical analysis of numerical algorithms [51], however, the
Wigner transforms have only limited interest for numerical simulations, where WKB methods
and their generalizations have turned out to stay the preferable tool.

We recall the basic WKB ansatz :

V(x,t) = a(l:,t)eis(‘”’t)/6 ,
The relation of Wigner transform methods to Multiphase WKB methods has been first studied
by the proposers in [57], where the general linear case is discussed.

Further theoretical studies on WKB methods have been performed by the proposers for Schrodinger-
Poisson systems e.g. in [20] and in [19] (where a periodic lattice potential is included).

The proponents have started numerical simulations of semiclassical limits for Schrédinger equa-
tions in a crystal using "multi branch” WKB methods (based on ideas of Y. Brenier [18]) : for
the linear case in [27] and for the weakly nonlinear case of coupling to the Poisson equation [26].

These numerical methods and results shall be extended to more realistic situations and other
applications of semiclassical NLS.
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2.4. ad (iv): quantum Boltzmann equations. Using the Wigner function formalism, the
Levinson equation

6tf:/0 /B[S(k,k,t—t)f(k;,t)—S(k,k,t—t)f(k,t)]dk dt

has recently been derived as the weak coupling limit of a one electron and arbitrarily many
phonons system [37], where the phonons represent a quantum description of oscillations of a
semiconductor crystal. Here f = f(k,t) is the electron distribution in dependence of the wave
vector k € B, where the (bounded) Brillouin zone B C R? is a basic cell of the dual of the
semiconductor crystal lattice. The distribution f is B-periodic. Explicit expressions for the
scattering rate S can be derived.

In a large time scale limit, the scattering operator of the Levinson equation converges to Fermi’s
Golden Rule and a first order correction term [45]. While implementations of Levinson’s scat-
tering operator, which is non-local in time, are extremely memory-consuming, the quantum
correction term involves only time-derivatives of the Wigner function. The Levinson and closely
related equations will be studied. Existence and uniqueness results for model problems will be
derived, and qualitative properties such as equilibria and long time behavior will be investigated.
The next aim will be the derivation of quantum scattering operators in the context of spatially
inhomogeneous models for transport. Asymptotic methods will be used based on assumptions
such as equilibrium for the phonon system and weak scattering. The aims are accurate, but
still computable quantum scattering and transport models. The final goal is the incorporation
of the new models in semiconductor simulation programs.

2.5. ad (v): stochastic numerical methods for kinetic equations. The seminal work
[43] by T. Lyons and N. Victoir, which introduced the concept of cubature on Wiener space,
stimulated recent efforts to improve numerical methods for stochastic differential equations
and for the corresponding Fokker-Planck equations, i.e., convection-diffusion equations, often
with degenerate diffusion (e.g. the current FWF project Cubature on Wiener Space, led by C.
Schmeiser). The basic idea is to replace the Wiener process, i.e., the Brownian motion B(t),
which drive the Stratonovich differential equations

d¢ = Vo(€)dt + Vi(€) 0 dB,

by a finite probability space, i.e., a finite set of deterministic paths wy(¢),...,wy(t) with proba-
bilities Ay, . .., Ay, carefully chosen such that expectation values E(f(£(T))) computed from the
solution are approximated with a certain accuracy by Zf\;l f(wi(T))\;, where y; is the solution
of the ODE
dy; = Vo(y;)dt + Vi (y;)dw; .

It is far from trivial and the subject of intensive investigations to design efficient numerical
algorithms based on this idea. However, some very promising results have already been achieved
for applications in Mathematical Finance [47].

We propose to extend the cubature idea to differential equations driven by Poissonian jump
processes. Here the whole theory has to be developed from the beginning (although a first step
has been taken recently in [22]). Since kinetic transport equations with scattering integrals can
be seen as master equations for velocity jump processes, this may lead to new types of numerical
approaches with the potential of improving standard Monte Carlo simulation methods. A
connection to topic (iv) is possible if a probabilistic interpretation of the quantum corrections
to the semiclassical transport model can be found.



