
CHARLES R. DOERING 

Department of Mathematics, Department of Physics, 
Center for the Study of Complex Systems, 

University of Michigan 

"Models versus physical laws/first principles, or why models work?” 
Wolfgang Pauli Institute, Vienna, Austria, February 2-5, 2011 

Progress & problems in the analysis of 
turbulence, dissipation and drag 

 Bounds on turbulence: what does it mean when they exist, and 
what does it mean when we don't know if they exist?  



•  Energy dissipation rate bounds for body-force 
 driven (turbulent) flows 

•  Bounds on (turbulent) wavenumber moments 

•  Energy dissipation rate bounds for boundary 
 driven (turbulent) flows 
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         Experiments:                 Direct numerical simulations: 





Theorem:  for Φ(ξ) in L2([0,1]d), 
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  φ(η) = sin(2πη) + Aksin(2πkη) 

__________!
accepted!!



φ(η) = sin(2πη) + A2sin(4πη) 



φ(η) = sin(2πη) + A3sin(6πη) 



φ(η) = sin(2πη) + A4sin(8πη) 



φ(η) = sin(2πη) + Aksin(2πkη) 



φ(η) = sin(2πη) + Aksin(2πkη) 
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•  Bounds on (turbulent) wavenumber moments 

•  Energy dissipation rate bounds for boundary 
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Theorem :  For any 0 < δ < 1
2 ,  

∃ cn <∞ so that as ν → 0,
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Consistent (mod δ) with E(k) ~ k -q  up to kc ~ Rqc  with
q = 8

3   and  qc = 3
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Consistent (mod δ) with E(k) ~ k -q  up to kc ~ Rqc  with
q = 5

3   and  qc = 3
4
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=O(1) as ν →∞ ... then______ 
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Theorem :  For any 0 < δ < 1
2 ,  

∃ cn <∞ so that as ν → 0,
________ 
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•  Does steady shear-suction minimize dissipation? 

•      $26 prize problem = $64 question! 

•  Does ε =O(1) as Re → ∞ with flux at boundaries? 

•     $27 prize problem = $128 question! 

•  How do we bound the turbulent drag on a body? 

•                                   ?! 

Some questions & challenges: 

•  Other turbulent transport & mixing problems … 


