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Progress & problems in the analysis of
turbulence, dissipation and drag

* Energy dissipation rate bounds for body-force
driven (turbulent) flows

* Bounds on (turbulent) wavenumber moments

* Energy dissipation rate bounds for boundary
driven (turbulent) flows
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* Energy dissipation rate bounds for body-force
driven (turbulent) flows

* Bounds on (turbulent) wavenumber moments

* Energy dissipation rate bounds for boundary
driven (turbulent) flows
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FIG. 5. Photographs of flow states at {a) R = 6000, (b) R =24 000, (c) R =48 000, and (d) R = 122 000, obtained using Kalliroscope
flow visualization. Eight vortices are visible in (a) and (b) and possidly (c), but not in (d)
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FIG. 5. Couette-Taylor experiments. Logarithmic plots of the
nondimensional rates of energy dissipation By as a function of the
Reynolds number.
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nondimensional rates of energy dissipation 8 as a function of the
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FIG. 5. Couette-Taylor experiments. Logarithmic plots of the
nondimensional rates of energy dissipation Bp as a function of the
Reynolds number. The black triangles (A) are the results obtained
with smooth cylinders, and the open ones (A) correspond to those
obtained with the ribbed ones. The crosses (X) show for compari-
son the rates of energy injection By deduced from the data obtained
with smooth cylinders by Lathrop, Finenberg, and Swinney [8].
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FIG. 3. (a) Skin friction coefficient f vs Reynolds number Re for
the four cases (O) ss, (+) sr, (¢) rs. and ((J) rr, bottom to top.
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A simple exact steady solution of the problem is the

laminar flow u,=U (y)i— V*j with
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FIG. 2. Streamlines for the steady laminar flow at several parameter values.
(a) Plane Couette flow, Re= 100 and #=0. (b) Re=99.99 and 6=0.9°, with
laminar boundary layer thickness 8,~0.64h. (c) Re=98.77 and 6=9°,
with laminar boundary layer thickness 6,~0.0644.
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FIG. 6. The dissipation factor 8=g&Xh/U*> vs Reynolds number Re. The
discrete data (- *) at the top are the rigorous upper bound z(Re,#) in Eq.
(5.2) for injection angles #=1°,0.1°,0.01°, and 0.001° (there is very little
sensitivity of the bound to changes in # at small angles). The dashed line
segment (- - -) is the best known high Re bound for turbulent Couette flow,
Bp(Re,0)=0.01087 (from Ref. 26). The crosses (X) show the fit in Eq.
(5.4) to experimental data. The solid lines (—) are, from top to bottom, the
dissipation factor in Eq. (5.6) for injection angles #=1°,0.1°,0.01°, and
0.001°. The lower envelope to the curves is the dissipation factor for plane
Couette flow, the only rigorous lower bound available for the dissipation
factor for arbitrary injection angles.
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FIG. 5. Summary of the stability portrait in the Re— # plane. The steady
laminar flow i1s absolutely stable according to the energy method for Re
<82 or #>3°(with tanf~0.05). The steady laminar flow is linearly un-
stable in the indicated region in the upper left hand corner where £
<<0.001° (with tan #~0.0002) and Re=700 000. The dotted line 1s a sketch
of the conjectured nonlinear stability boundary for the steady laminar flow.
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FIG. 1. The outer cylinder rotates at angular velocity €). Fluid is injected at
the outer boundary with an entry angle ®=arctan[¢/(R3Q)] and removed
uniformly on the surface of the inner cylinder.
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The geometrical factor is »=R,/R,. When n—1 we
approach the narrow-gap limit where (R,—R;)<<R;,
and expect to find results similar to those from the slab
geometry—namely, plane Couette flow with suction.
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FIG. 5. Summary of the stability portrait in the Re— # plane. The steady
laminar flow is absolutely stable according to the energy method for Re
<82 or 0>3°(with tanf~0.05). The steady laminar flow is linearly un-
stable in the indicated region in the upper left hand corner where 0
<0.001° (with tan #~=0.0002) and Re=700 000. The dotted line is a sketch

of the conjectured nonlinear stability boundary for the steady laminar flow.
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Some questions & challenges:

Does steady shear-suction minimize dissipation?
$26 prize problem = $64 question!
Does ¢ = (1) as Re — oo with flux at boundaries?
$27 prize problem = $128 question!
How do we bound the turbulent drag on a body?
v— @< SO —>F

Other turbulent transport & mixing problems ...

Thanks for your attention!



