Progress & problems in the analysis of turbulence, dissipation and drag

Bounds on turbulence: what does it mean when they exist, and what does it mean when we don't know if they exist?

CHARLES R. DOERING

Department of Mathematics, Department of Physics, Center for the Study of Complex Systems, University of Michigan

"Models versus physical laws/first principles, or why models work?" Wolfgang Pauli Institute, Vienna, Austria, February 2-5, 2011

Progress & problems in the analysis of turbulence, dissipation and drag

- Energy dissipation rate bounds for body-force driven (turbulent) flows
- Bounds on (turbulent) wavenumber moments
- Energy dissipation rate bounds for boundary driven (turbulent) flows

Experiments:

Direct numerical simulations:

300

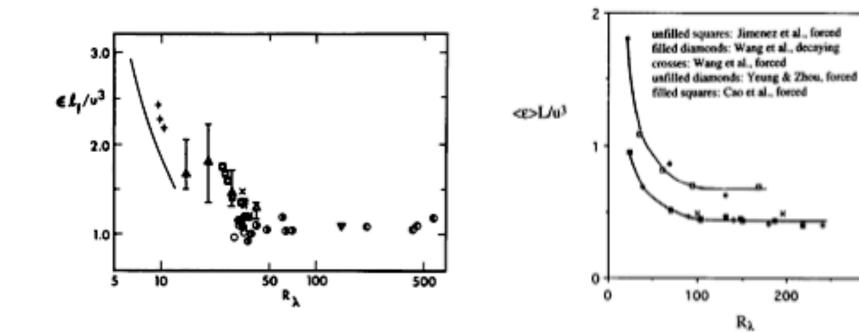
On the scaling of the turbulence energy dissipation rate

K. R. Sreenivasan Mason Laboratory, Yale University, New Haven, Connecticut 06520

(Received 29 November 1983; accepted 23 February 1984)

An update on the energy dissipation rate in isotropic turbulence

Katepalli R. Sreenivasan Mason Laboratory, Yale University, New Haven, Connecticut 06520-8286 (Received 29 July 1997; accepted 23 October 1997)

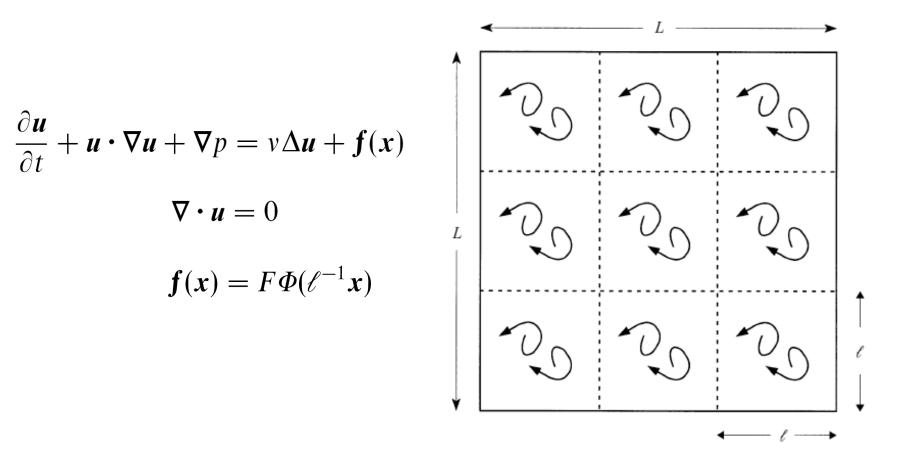


Energy dissipation in body-forced turbulence

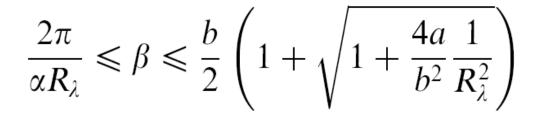
By CHARLES R. DOERING¹ AND CIPRIAN FOIAS²

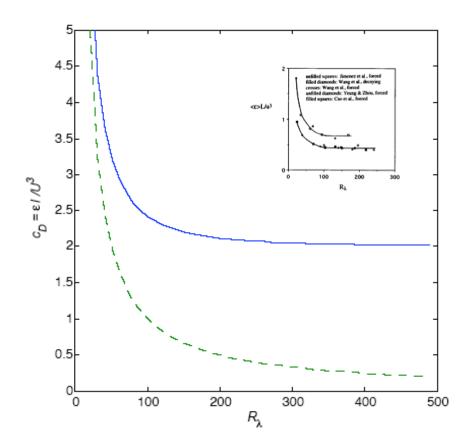
¹Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1109, USA e-mail: doering@umich.edu

²Department of Mathematics, Indiana University, Bloomington, IN 47405, USA



Theorem: for $\Phi(\xi)$ in $L^2([0,1]^d)$,





J. Fluid Mech. (2003), *vol.* 494, *pp.* 275–284. © 2003 Cambridge University Press DOI: 10.1017/S002211200300613X Printed in the United Kingdom

Energy dissipation in body-forced plane shear flow

By C. R. DOERING^{1,2}, B. ECKHARDT³ AND J. SCHUMACHER³

¹Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1109, USA ²Michigan Center for Theoretical Physics, Ann Arbor, MI 48109-1120, USA ³Fachbereich Physik, Philipps-Universität, D-35032 Marburg, Germany

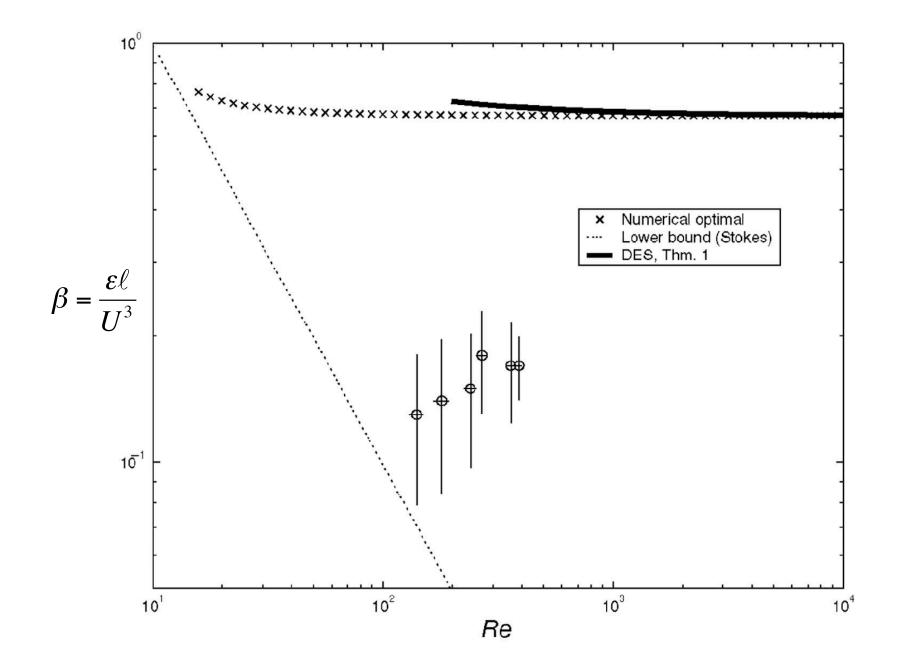
$$f(\mathbf{x}) = F\phi(\mathbf{y}/\ell)\mathbf{e}_{\mathbf{x}}$$

Journal of Turbulence Volume 6, No. 17, 2005

Variational bounds on the energy dissipation rate in body-forced shear flow

N. P. PETROV* †‡, L. LU† and C. R. DOERING †‡

†Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043, USA ‡Also at the Michigan Center for Theoretical Physics, University of Michigan, Ann Arbor, MI 48109-1120, USA



Variations on Kolmogorov Flow: Turbulent Energy Dissipation and Mean Flow Profiles

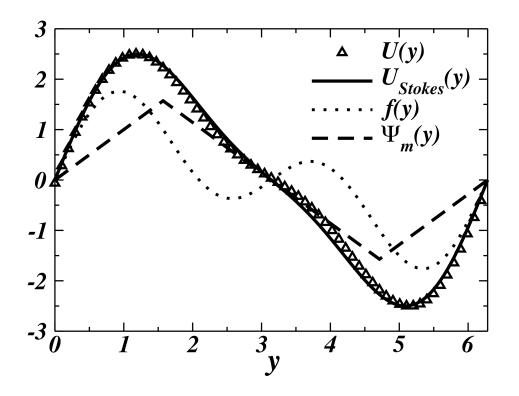
B. ROLLIN¹ Y. DUBIEF¹ & CHARLES R. DOERING²

¹School of Engineering, University of Vermont, Burlington, VT 05405, USA
²Department of Mathematics, Department of Physics, and Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109-1107, USA

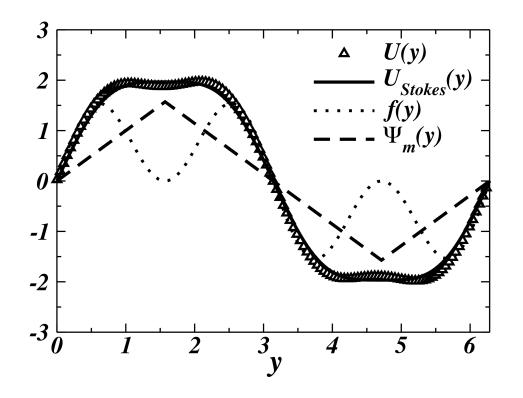
$$f(\boldsymbol{x}) = F\phi(\boldsymbol{y}/\ell)\boldsymbol{e}_{\boldsymbol{x}}$$

$$\phi(\eta) = \sin(2\pi\eta) + A_k \sin(2\pi k\eta)$$

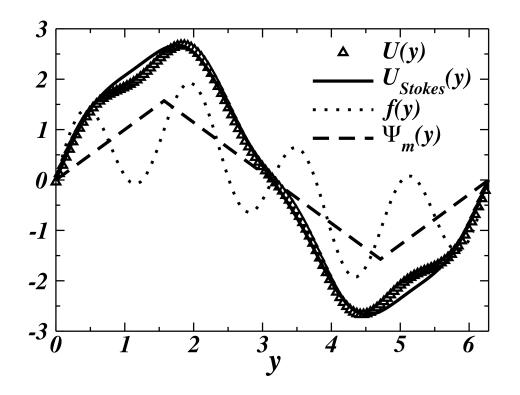
$$\phi(\eta) = \sin(2\pi\eta) + A_2 \sin(4\pi\eta)$$



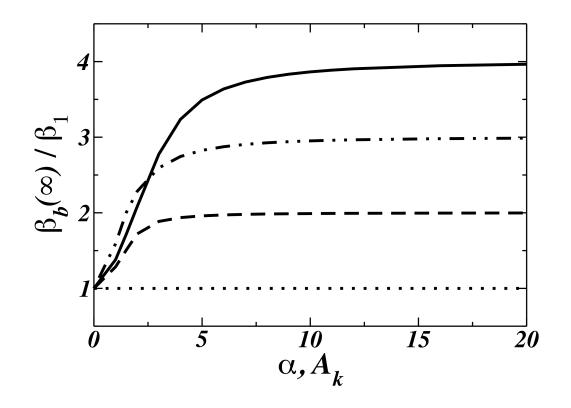
$\phi(\eta) = \sin(2\pi\eta) + A_3 \sin(6\pi\eta)$



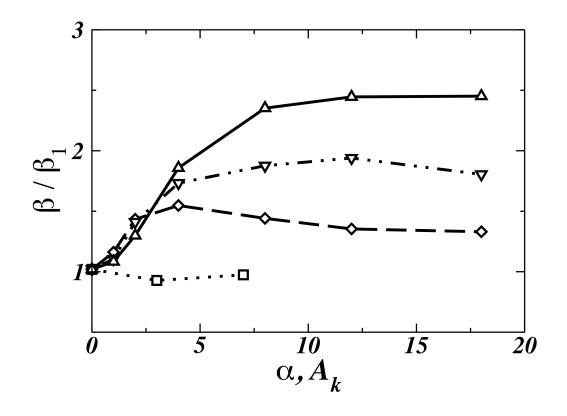
$$\phi(\eta) = \sin(2\pi\eta) + A_4 \sin(8\pi\eta)$$



$$\phi(\eta) = \sin(2\pi\eta) + A_k \sin(2\pi k\eta)$$



$\phi(\eta) = \sin(2\pi\eta) + A_k \sin(2\pi k\eta)$



Energy dissipation in fractal-forced flow

Alexey Cheskidov^{a)} Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109

Charles R. Doering^{b)} Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109 and Michigan Center for Theoretical Physics, University of Michigan, Ann Arbor, Michigan 48109

Nikola P. Petrov^{c)} Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019

(Received 29 July 2006; accepted 30 November 2006; published online 7 June 2007)

$\mathbf{f} \in H^{-\alpha}$ with $\alpha \in [0, 1]$

 $\beta \lesssim \operatorname{Re}^{\alpha/(2-\alpha)}$

Progress & problems in the analysis of turbulence, dissipation and drag

- Energy dissipation rate bounds for body-force driven (turbulent) flows
- Bounds on (turbulent) wavenumber moments
- Energy dissipation rate bounds for boundary driven (turbulent) flows

Physica D 165 (2002) 163-175

www.elsevier.com/locate/physd

Bounds on moments of the energy spectrum for weak solutions of the three-dimensional Navier–Stokes equations

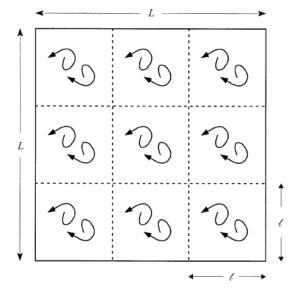
Charles R. Doering^{a,*}, J.D. Gibbon^{b,1}

^a Department of Mathematics, University of Michigan, 525 East University Avenue, Ann Arbor, MI 48109-1109, USA ^b Department of Mathematics, Imperial College of Science, Technology and Medicine, London SW7 2BZ, UK

> Received 25 July 2001; accepted 5 March 2002 Communicated by U. Frisch

$$\langle \tilde{\kappa}_n \rangle \equiv \left\langle \left(\frac{\| \nabla^n \boldsymbol{u} \|_2}{\| \boldsymbol{u} \|_2} \right)^{1/n} \right\rangle$$

$$\langle \tilde{\kappa}_n \rangle \equiv \left\langle \left(\frac{\| \nabla^n \boldsymbol{u} \|_2}{\| \boldsymbol{u} \|_2} \right)^{1/n} \right\rangle$$



Theorem: For any
$$0 < \delta < \frac{1}{2}$$
,
 $\exists c_n < \infty$ so that as $v \to 0$,
 $\ell \langle \kappa_n \rangle \le c_n \left(\frac{L}{\ell}\right)^{3(n-1)/n} Re^{3-5/2n+\delta/n}$

Consistent (mod δ) with $E(k) \sim k^{-q}$ up to $\ell k_c \sim R^{q_c}$ with $q = \frac{8}{3}$ and $q_c = 3$

Now assume that
$$\frac{\|u\|_{\infty}}{L^{-\frac{3}{2}}\|u\|_{2}} = O(1)$$
 as $v \to \infty$... then

Theorem: For any
$$0 < \delta < \frac{1}{2}$$
,
 $\exists c_n < \infty$ so that as $v \to 0$,
 $\ell \langle \kappa_n \rangle \leq c_n Re^{3/4 - 1/4n + \delta/n}$

Consistent (mod δ) with $E(k) \sim k^{-q}$ up to $\ell k_c \sim R^{q_c}$ with $q = \frac{5}{3}$ and $q_c = \frac{3}{4}$

Progress & problems in the analysis of turbulence, dissipation and drag

- Energy dissipation rate bounds for body-force driven (turbulent) flows
- Bounds on (turbulent) wavenumber moments
- Energy dissipation rate bounds for boundary driven (turbulent) flows

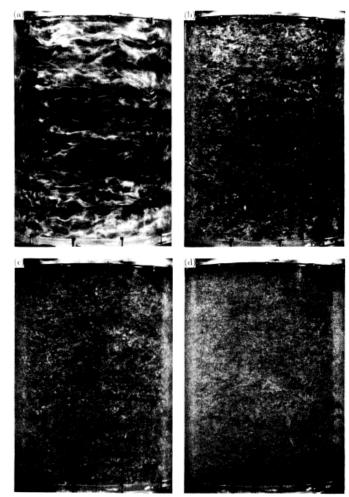
PHYSICAL REVIEW A

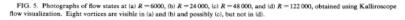
VOLUME 46, NUMBER 10

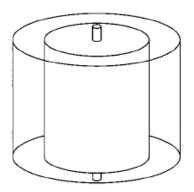
15 NOVEMBER 1992

Transition to shear-driven turbulence in Couette-Taylor flow

Daniel P. Lathrop,* Jay Fineberg, and Harry L. Swinney[†] Center for Nonlinear Dynamics, University of Texas, Austin, Texas 78712 and Department of Physics, University of Texas, Austin, Texas 78712 (Received 27 March 1992)







VOLUME 46, NUMBER 10

15 NOVEMBER 1992

Transition to shear-driven turbulence in Couette-Taylor flow

Daniel P. Lathrop,* Jay Fineberg, and Harry L. Swinney[†] Center for Nonlinear Dynamics, University of Texas, Austin, Texas 78712 and Department of Physics, University of Texas, Austin, Texas 78712 (Received 27 March 1992)

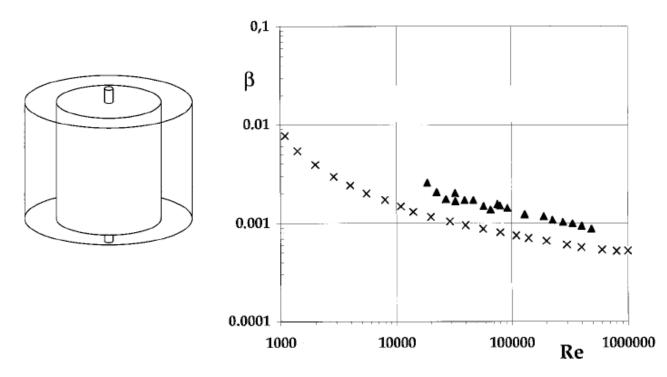


FIG. 5. Couette-Taylor experiments. Logarithmic plots of the nondimensional rates of energy dissipation β_D as a function of the Reynolds number.

J. Fluid Mech. 17 (1963) 405-432.

Heat transport by turbulent convection By LOUIS N. HOWARD

J. Fluid Mech. 37 (1969) 457-477.

On Howard's upper bound for heat transport by turbulent convection By F. H. BUSSE

J. Fluid Mech. 41 (1970) 219–240.

Bounds for turbulent shear flow By F. H. BUSSE

Energy Dissipation in Shear Driven Turbulence

Charles R. Doering^(a)

Department of Physics and Institute for Nonlinear Studies, Clarkson University, Potsdam, New York, 13699-5820

Peter Constantin^(b)

Department of Mathematics, University of Chicago, Chicago, Illinois 60637 (Received 21 February 1992; revised manuscript received 13 August 1992)

PHYSICAL REVIEW E

VOLUME 49, NUMBER 5

MAY 1994

Variational bounds on energy dissipation in incompressible flows: Shear flow

Charles R. Doering* Department of Physics, Clarkson University, Potsdam, New York 13699-5820

Peter Constantin[†] Department of Mathematics, University of Chicago, Chicago, Illinois 60637 (Received 18 October 1993)

Physica D 101 (1997) 178-190

Improved variational principle for bounds on energy dissipation in turbulent shear flow

Rolf Nicodemus¹, Siegfried Grossmann², Martin Holthaus^{*} Fachbereich Physik der Philipps-Universität, Renthof 6, D–35032 Marburg, Germany

Received 18 July 1996; revised 2 September 1996; accepted 3 September 1996 Communicated by F.H. Busse

PHYSICA D

PHYSICA D

Physica D 121 (1998) 175-192

Unification of variational principles for turbulent shear flows: the background method of Doering–Constantin and the mean-fluctuation formulation of Howard–Busse

R.R. Kerswell¹

Department of Mathematics, University of Bristol, Bristol, BS8 1TW, UK

Received 15 October 1997; received in revised form 5 February 1998; accepted 27 March 1998 Communicated by F.H. Busse

Variational Bound on Energy Dissipation in Turbulent Shear Flow

Rolf Nicodemus, Siegfried Grossmann, and Martin Holthaus Fachbereich Physik der Philipps-Universität, Renthof 6, D-35032 Marburg, Germany (Received 25 July 1997)

J. Fluid Mech. (2003), vol. 477, pp. 363–379. © 2003 Cambridge University Press DOI: 10.1017/S0022112002003361 Printed in the United Kingdom

363

Improved upper bound on the energy dissipation rate in plane Couette flow: the full solution to Busse's problem and the Constantin–Doering–Hopf problem with one-dimensional background field

By S. C. PLASTING AND R. R. KERSWELL

Department of Mathematics, University of Bristol, Bristol, BS8 1TW, UK

VOLUME 46, NUMBER 10

15 NOVEMBER 1992

Transition to shear-driven turbulence in Couette-Taylor flow

Daniel P. Lathrop,* Jay Fineberg, and Harry L. Swinney[†] Center for Nonlinear Dynamics, University of Texas, Austin, Texas 78712 and Department of Physics, University of Texas, Austin, Texas 78712 (Received 27 March 1992)

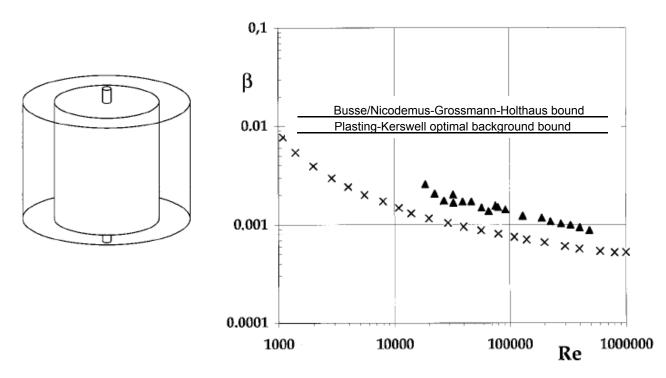


FIG. 5. Couette-Taylor experiments. Logarithmic plots of the nondimensional rates of energy dissipation β_D as a function of the Reynolds number.

VOLUME 56, NUMBER 1

Energy injection in closed turbulent flows: Stirring through boundary layers versus inertial stirring

O. Cadot,^{*} Y. Couder, A. Daerr, S. Douady, and A. Tsinober[†] Laboratoire Physique Statistique, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris, France

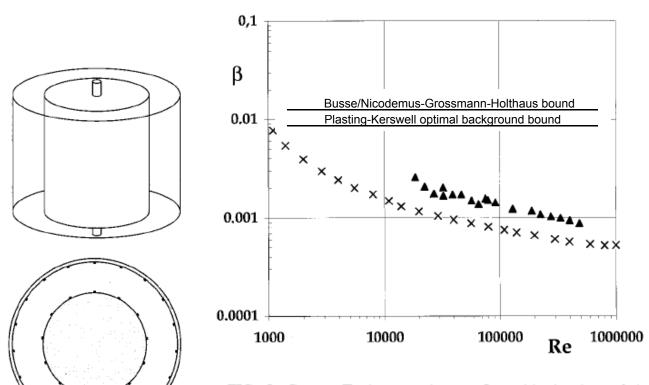


FIG. 5. Couette-Taylor experiments. Logarithmic plots of the nondimensional rates of energy dissipation β_D as a function of the Reynolds number. The black triangles (\blacktriangle) are the results obtained with smooth cylinders, and the open ones (\triangle) correspond to those obtained with the ribbed ones. The crosses (\times) show for comparison the rates of energy injection β_D deduced from the data obtained with smooth cylinders by Lathrop, Finenberg, and Swinney [8].

PHYSICAL REVIEW E 68, 036307 (2003)

Smooth and rough boundaries in turbulent Taylor-Couette flow

Thomas H. van den Berg,^{1,4} Charles R. Doering,^{2,3} Detlef Lohse,¹ and Daniel P. Lathrop⁴

¹Department of Applied Physics and J. M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

²Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109, USA
 ³Michigan Center for Theoretical Physics, Ann Arbor, Michigan 48109-1120, USA
 ⁴Department of Physics, IREAP and IPST, University of Maryland, College Park, Maryland 20742, USA

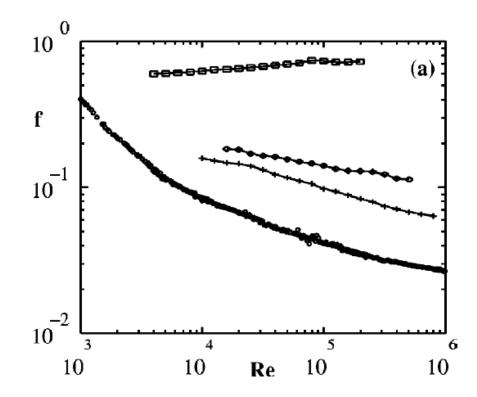


FIG. 3. (a) Skin friction coefficient f vs Reynolds number Re for the four cases (\bigcirc) ss, (+) sr, (\diamondsuit) rs, and (\square) rr, bottom to top.

Energy dissipation in a shear layer with suction*

Charles R. Doering^{a)}

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109

Edward A. Spiegel Department of Astronomy, Columbia University, New York, New York 10027

Rodney A. Worthing

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109

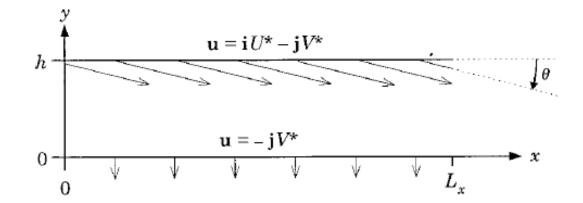
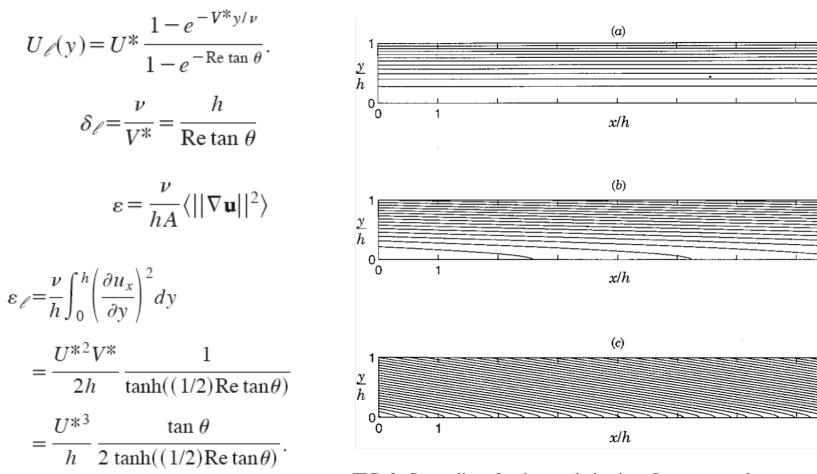


FIG. 1. Sketch of the boundaries and boundary conditions for the flows under consideration.

A simple exact steady solution of the problem is the laminar flow $\mathbf{u}_{\ell} = U_{\ell}(y)\mathbf{i} - V^*\mathbf{j}$ with



$$\lim_{\nu \to 0} \varepsilon_{\mathscr{C}} = \frac{\tan \theta}{2} \frac{U^{*3}}{h} \quad (\theta \neq 0).$$

FIG. 2. Streamlines for the steady laminar flow at several parameter values. (a) Plane Couette flow, Re=100 and θ =0. (b) Re=99.99 and θ =0.9°, with laminar boundary layer thickness $\delta_{\ell} \approx 0.64h$. (c) Re=98.77 and θ =9°, with laminar boundary layer thickness $\delta_{\ell} \approx 0.064h$.

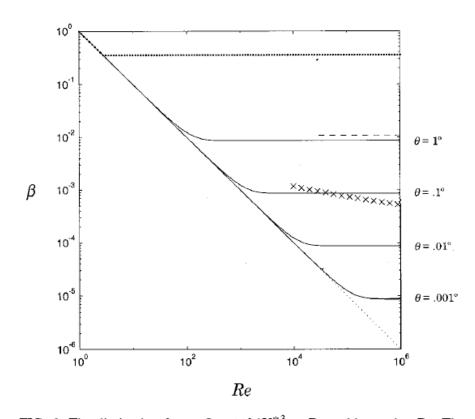
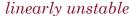


FIG. 6. The dissipation factor $\beta = \varepsilon \times h/U^{*3}$ vs Reynolds number Re. The discrete data (...) at the top are the rigorous upper bound $\beta_B(\text{Re},\theta)$ in Eq. (5.2) for injection angles $\theta = 1^{\circ}, 0.1^{\circ}, 0.01^{\circ}$, and 0.001° (there is very little sensitivity of the bound to changes in θ at small angles). The dashed line segment (- -) is the best known high Re bound for turbulent Couette flow, $\beta_B(\text{Re},0) \approx 0.01087$ (from Ref. 26). The crosses (×) show the fit in Eq. (5.4) to experimental data. The solid lines (-) are, from top to bottom, the dissipation factor in Eq. (5.6) for injection angles $\theta = 1^{\circ}, 0.1^{\circ}, 0.01^{\circ}$, and 0.001° . The lower envelope to the curves is the dissipation factor for plane Couette flow, the only rigorous lower bound available for the dissipation factor for angles.



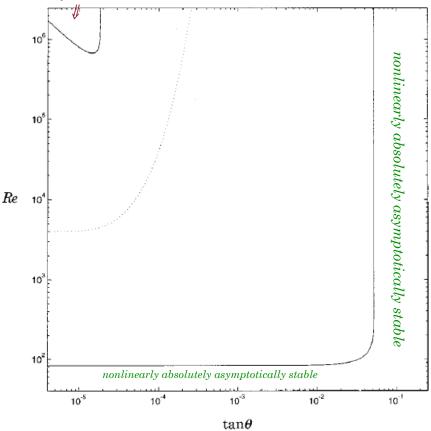


FIG. 5. Summary of the stability portrait in the Re– θ plane. The steady laminar flow is *absolutely stable* according to the energy method for Re <82 or θ >3° (with tan θ ≈0.05). The steady laminar flow is *linearly unstable* in the indicated region in the upper left hand corner where θ <0.001° (with tan θ ≈0.0002) and Re≥700 000. The dotted line is a sketch of the conjectured nonlinear stability boundary for the steady laminar flow.

Destabilizing Taylor–Couette flow with suction

Basile Gallet,¹ Charles R. Doering,² and Edward A. Spiegel³ ¹Laboratoire de Physique Statistique, Ecole Normale Supérieure, 75231 Paris, France

¹Laboratoire de Physique Statistique, Ecole Normale Supérieure, 75231 Paris, France ²Department of Mathematics, Department of Physics, and Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan 48109-1043, USA ³Department of Astronomy, Columbia University, New York, New York 10027, USA

(Received 1 June 2009; accepted 5 January 2010; published online 29 March 2010)

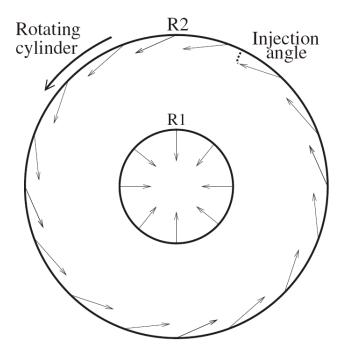


FIG. 1. The outer cylinder rotates at angular velocity Ω . Fluid is injected at the outer boundary with an entry angle $\Theta = \arctan[\varphi/(R_2^2\Omega)]$ and removed uniformly on the surface of the inner cylinder.

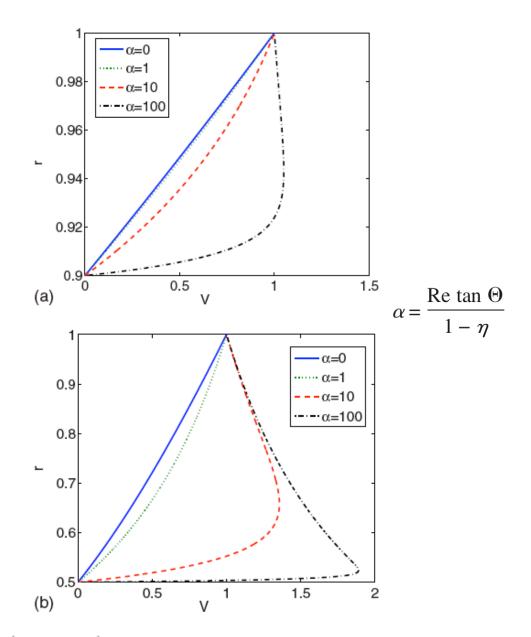
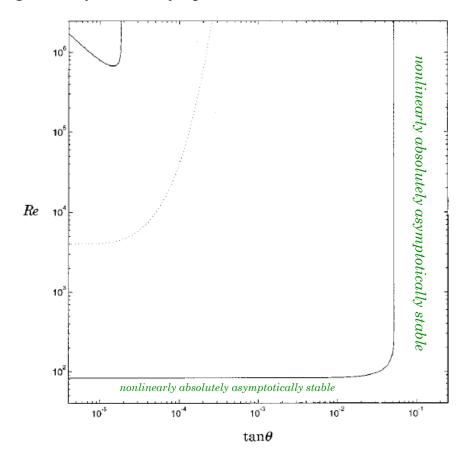


FIG. 2. (Color online) Azimuthal velocity profiles for different values of the radial Reynolds number (top: η =0.9, bottom: η =0.5).

The geometrical factor is $\eta = R_1/R_2$. When $\eta \rightarrow 1$ we approach the narrow-gap limit where $(R_2 - R_1) \ll R_1$, and expect to find results similar to those from the slab geometry—namely, plane Couette flow with suction.



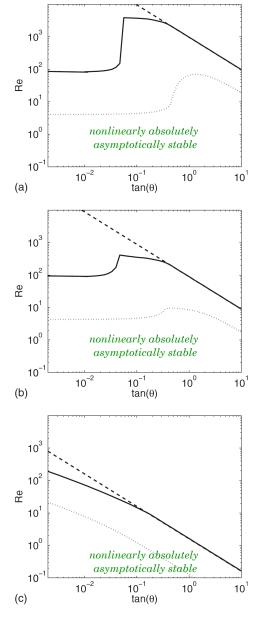


FIG. 5. Summary of the stability portrait in the Re- θ plane. The steady laminar flow is *absolutely stable* according to the energy method for Re <82 or θ >3°(with tan θ ≈0.05). The steady laminar flow is *linearly unstable* in the indicated region in the upper left hand corner where θ <0.001°(with tan θ ≈0.0002) and Re≥700 000. The dotted line is a sketch of the conjectured nonlinear stability boundary for the steady laminar flow.

FIG. 9. Marginal energy stability boundary for different values of η (top: η =0.99, middle: η =0.9, bottom: η =0.02). The solid line is the numerically computed energy stability boundary, the dashed line is the upper bound Re₁ on the location of that curve, and the dotted line is the lower bound Re₂.

Some questions & challenges:

- Does steady shear-suction *minimize* dissipation?
- $$2^6$ prize problem = **\$64** question!
- Does $\varepsilon = \mathcal{O}(1)$ as Re $\rightarrow \infty$ with flux at boundaries?
- $$2^7$ prize problem = \$128 question!
- How do we bound the turbulent drag on a body?

• Other turbulent transport & mixing problems ...

Thanks for your attention!