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The questions before us are:

I Are the turbulence models based on physics?

I Do we know all the necessary physics?

My answers in brief will be:

I Certainly the models we have today were (and are) based on
the physics as we knew it yesterday.

I But the physics we know today is very different from
yesterday.
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Let’s first look at the basic Reynolds stress model. What ’physics’
did does get right?

I Actually I think the RS model is probably one of the great
intellectual triumphs of the second half of the 20th century.

I I did not contribute directly to this effort.

I But I did have a front row seat to observe how this happened.

I I want to show you how I think it reflects the physics as we
knew it 40 years ago.
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I It was based upon the basic K41 picture – at least the K41
version put forth by Batchelor in a series of papers in the late
40’s and in his Homogeneous Turbulence book(s).

I Actually according to Arkady this spectral version is probably
more due to Obukov.
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The fundamental K41 picture to which I refer is this one:

I If the Reynolds number is sufficiently high, there exists a local
equilibrium range spectral range for which the non-linear
spectral transfer and dissipation are essentially in balance.

I In the limit of infinite Reynolds number, then there also exists
an inertial subrange where only the non-linear spectral transfer
is important. In it the spectral flux, say εk |inertial subrange is
equal to the rate of dissipation of turbulence energy by
viscosity, say ε. The is almost true at very very large Re.

I If this equilibrium range exists, then the spectral flux provided
to it from the energetic scales must ALSO be equal to the
dissipation.

I From this (and this alone) we can DEFINE a length scale
characteristic of the ENERGETIC eddies, say
Lε = u3/εk |inertial subrange = u3/ε.

I In the limit of INFINITE REYNOLDS NUMBER we can show
Lε to be proportional to the true integral length scale, L,
defined from the correlation (or spectrum).



. . . . . .

Now the fun begins – additional hypotheses we have assumed to
have also be confirmed, but in fact were never more than ‘working’
hypotheses.

I ”The universal equilibrium range has been shown
experimentally to be true.” Actually it has only been
demonstated in statistically stationary flows (e.g., ‘forced’
DNS, laboratory shear flows, ‘statistically stationary’ portions
of the atmosphere). These flows are in fact statistically
stationary and therefore must be also in local equilibrium,
quite independent of K41 (or any other hypothesis).

I ”Local isotropy of the small scales, and even of the
dissipation.” Few flows exhibit dissipation isotropy, unless
already nearly isotropic.

I ”The universal equilibrium range is universal.” Remember the
famous plot of one-dimensional spectra from all different flows
collapsing in Kolmogorov variables – ignoring to point out
that in all of these plots the dissipation was determined by
collapsing the curves (usually by choosing the dissipation to
line up the k−5/3 range ‘point of tangency’).
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I ”The ratio of integral scale to pseudo-integral scale is
constant and universal.” Contrary to popular opinion (and
some oft cited papers), this is demonstrably false from a large
number of experiments. In fact in some flows (the statistically
stationary ones in fact), L/Lε appear to reach an asymptote
as the Reynolds number increases. Others do not.

I It is obvious how the multipoint models (like LES, EDQMN,
etc) depend on these ideas.

I It is not so obvious how RANS does – or at least was believed
to in the 1970’s.
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I No matter the model, there was (is) always a coefficient
involving u and Lε, either as an eddy viscosity, say νt ∝ u Lε,
or as a time scale, τL ∝ Lε/u

E.G.
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I Note how fluxes of one quantity can be due to gradients of
another an in other directions (e.g. Launder, Reece & Rodi,
various Lumley versions).

I All closures must be made to have proper tensorial invariance
to change of coordinates, rotation, etc. Many terms needed.

I Direct dependence on local Reynolds number, uLε/ν, can also
be incorporated – which compensates empirically for the lack
of a spectral gap. Many empirical functions and coefficients.

I Also and the coefficients can be written in terms of the
invariants of uiuk , etc. More empirical constants needed.
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I All models of pressure-strain rate involve this time scale, ; e.g.
return to isotropy (another item of ‘faith’, rapid term, elliptic
relaxation. Latter two well-founded in homog. theory for
pressure fluctuations.

I My own view of URANS is that it is like a low-pass temporally
filtered version ensemble average NS; i.e., includes
non-stationary effects up to ‘filter frequency’ – which is u/Lε.
Therefore valid for times much longer than this, whether or
not there is a temporal scale separation. My reason is that
most closure assumptions really are more based on local
homogeniety than stationarity.
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The so-called ‘dissipation’ model equation is even more primitive;
e.g.,
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Plus we ‘assume’ isotropy of the dissipation – with corrections
proportional to the Reynolds stress for low Reynolds numbers.
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These equations and models did not evolve in a vacuum.

I Since they originally were believed to be based on ideas of
universality of the small scales and independence of initial (or
upstream) conditions, there was a serious attempt to evaluate
them against ‘viscometric’ turbulence experiments.

I I was involved in some of these experiments (wake, jet,
plumes, contraction, grid).

I It was originally hoped by all that a universal turbulence
model would be possible.
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I Even from the beginning the turbulence ‘viscometric’
experiments were problematical.

I The models described evolution pretty well (i.e., especially as
they became more sophisticated, but with coefficients which
varied from one flow to another.

I The favorite ‘fix’ was to decide which experients were
‘correct’, and which were ‘anomalous’; e.g., the famous -1.22
decay for decaying turbulence was good, the axisymmetric jet
data bad.

I Free shear flows alway from walls were always a problem,
especially round jets vs plane jets, axisymmetric wakes, plane
wakes. Separation and APG’s hopeless.

I Lumley’s 1983 comment quoted yesterday was at the end of
over a decade of frustration. Almost all modellers gave up
hope for any universal models.

I Most now pretend they had never hoped for them. :-)
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I Sometimes things only ‘appear to work’ ... or

RRWR

Right Result, Wrong Reason... Tsinober (many times)

I I think I now understand WHY the RANS models seemed to
get the physics right. But didn’t work very well – or at least
were not universal.

I Two reasons:
I They only had part of the physics.
I The whole physics explains both why the models worked – and

why they didn’t.

I The bad news is that K41 (or even K62) is not the whole
story.

I Maybe there are THREE STORIES – for sure at least TWO.
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In 1986 I fell (or was pushed there by my students) into an
alternative universe – the BIZZARO WORLD of
EQUILIBRIUM SIMILARITY – but NO LOCAL EQUILBRIUM.

I It begins with the spectral energy equation for isotropic
turbulence given by:

∂E

∂t
= T − 2νk2E (3)

I Note that this is often suggested to be the Fourier space
counterpart to the von Karman/Howarth equation. It is not,
since it is does not require the assumption of isotropic
turbulence.

I The equilibrium similarity theory summarized below was
presented in George 1989 (Advances in Turbulence, George and

Arndt eds. Bacon and Francis (Hemisphere), and in great detail by
George 1992 (‘The Decay of Homogeneous Isotropic Turbulence,’

Physics of Fluids B, 5, 1 - 29.)
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Similarity solutions were sought of the form:

E (k, t) = Es(t)f (k) (4)

T (k, t) = Ts(t)g(k) (5)

where
k = kl(t) (6)

The functions Es(t),Ts(t) and l(t) were not assumed a priori as in
the von Karman/Howarth and Batchelor analyses, but were
determined from the equations themselves by an equilibrium
similarity hypothesis described below.
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Substituting these into equation 3 and multiplying by l2/νEs(t)
yields:
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dt

]
f +
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2
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The equilibrium similarity hypothesis simply requires that the flow
evolve asymptotically in time in such a manner that all of the
terms in equation 7 retain exactly the relative value at the same
value of scaled wavenumber k .

Said another way, all of the terms in square brackets of equation 7
must evolve with time in exactly the same way so the relative
balance of the equation is maintained. Since one of them is
constant, all must be. There is no reason to believe the constants
to be independent of the initial conditions, nor are they.
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The requirement for an equilibrium solution is precisely the
requirement for any single set of scales to collapse the data over all
wavenumbers, since the collapse can be perfect only if the
equations admit to such solutions. Why the flow might behave this
way has been a matter for speculation for nearly a century, but it
has been generally observed that when such solutions exist, nature
finds them, George 1989, 1999.

No further assumptions are required to determine the following:
I The energy spectra collapse at all wavenumbers for fixed

initial (or upstream conditions) when plotted as E (k, t)/u2λ
versus kλ.

I The non-linear spectral transfer function collapses when
plotted as λT (k, t)/νu2 versus kλ. This surprising result is
the primary difference from the earlier analyses of von
Karman/Howarth, Batchelor and Lin who all assumed at the
outset that T scaled with u3.

I The turbulence energy must decay as a power law:

3

2
u2 = B[t − to ]

n (8)

where to is a virtual origin and the exponent n < 0 is
determined by the initial conditions.
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I Note that this implies that the rate of dissipation is given by:

ϵ = −3

2

du2

dt
= −nB[t − to ]

n−1. (9)

I The Taylor microscale is given by:

λ2 =
10

−n
ν[t − to ] (10)

where

λ2 ≡ 15ν
u2

ϵ
(11)

The linear dependence on time follows directly from the power
law decay of the energy.

I The product of the velocity derivative skewness, S∂u1/∂x1 and
Rλ is constant and dependent only on the initial conditions.
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Grid turbulence (at least for normal grids) does seem to produce
true power law decay where t = x/U, since λ2 really is linear in t.

Figure: Plot of λ2 versus x/M, Batchelor/Townsend 1948 Proc.Roy.Soc. A.
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The famous and oft-cited Comte-Bellot/Corrsin 1971 JFM
experiment provides excellent support

Spectra at grid Reynolds numbers of 34,000 and 17,000
(72 ≥ Rλ ≥ 61 and 49 ≥ Rλ ≥ 37 respectively) collapse
remarkably well in Taylor variables at ALL wavenumbers.

Figure: Comte-Bellot/Corrsin 1971 spectra in Taylor variables from two
different grids: left: 2 in. grid at x/M = 42, 98, and 171; right: 1 in.
grid at x/M = 45, 120, 240 and 385 (from George 1992 Phys.Fluids).
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... and so do the much higher Reynolds number spectra of Kang et
al. 2003 JFM (active grid Reynolds number about 1.1x105,
716 ≥ Rλ ≥ 626) for four downstream positions in the same wind
tunnel.

Figure: Longitudinal and transverse component velocity spectra in Taylor
variables from high Reynolds number active grid experiment of Kang et
al. 2003 JFM in Corrsin tunnel. left: data from paper. right: data from
reanalysis by Wänström and George 2008 APS/DFD mtg).
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Effect of initial conditions
As predicted by the theory, the spectra are different for different
grids.

Figure: Comte-Bellot/Corrsin 1971spectra in Taylor variables from both
grids plotted together showing effect of initial conditions (from George

1992 Phys.Fluids).
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The theory has been extended (Wänström and George 2008) to show
that permanently anisotropic decay is theoretically possible
– as the preponderance of the data clearly indicate

Figure: Anisotropy ratios from Corrsin tunnel (from Wänström and George

2008 APS/DFD mtg). left: high Reynolds number active grid experiment
of Kang et al. 2003 JFM. right: Square bar grid after contraction of
Comte-Bellot/Corrsin 1966 JFM.
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Even the Batchelor/Townsend 1948 Proc. Roy. Soc. paper (which
argues for an alternative view) provides at least as strong a support
for the G92 theory. Note that in spite of the curves drawn, for each
set of data for x/M ≥ 50, L ∝ (t − to)

1/2 (left figure) and L/λ
(right figure) is nearly horizontal. Also the coefficients vary with
grid Reynolds number (or initial conditions).

Figure: left: Integral scale squared versus x/M. Right: L/λ versus x/M.
from Townsend/Batchelor 1948 Proc.Roy.Soc.



. . . . . .

The derivative skewness (for fixed upstream or initial conditions)
varies inversely with Rλ during decay. To see this, multiply the
spectral energy equation by k2, integrate and normalize to obtain:

G =
30

7
+

1

2
S∂u1/∂x1Rλ (12)

Figure: left: G versus Rλ for Batchelor/Townsend 1948 experiment.
right: G92 plot of same data but of logS versus logRλ.
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How did things go wrong? How could we have missed
these solutions before?

Batchelor and Townsend 1948 make the remarkable statement: “In
view of the attempts of v.Karman and Howarth (1938) and of
Dryden (1943) to deduce the laws of decay from the assumption
that the various correlations functions f (r), k(r), etc. are only
functions of r/l where l is a length which may change during decay,
it is of interest to note that the measurements show G .. to be
constant during decay.” They then go on to assume that S∂u1/∂x1
must therefore be constant during decay with the consequence
that the triple correlation independent (and corresponding
non-linear transfer function) must be independent of Rλ.
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And later they say: “If the result that S is an absolute constant be
assumed to hold for indefinitely large values of RM ...then G
approximates to the form G = 0.2Rλ.”

Recall: This obviously also requires Rλ = constant which is
possible ONLY IF u2 ∝ t−1. But Rλ is clearly not constant, as
the subsequent measurements of Corrsin and co-workers showed.

Thus the Batchelor/Townsend theoretical construction collapses.

The turbulence community seems to have recognized that Rλ is
not constant during decay, but not the consequences for the theory
which demands it be true.
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Clearly, even though rejecting the underlying and necessary
hypotheses, the turbulence field has been willing to keep the
consequences of the deductions from assumptions about the flow
which are incorrect – namely the idea that the turbulence cannot
be described by a single length scale.

In fact, by the 1970’s it had become a religion. Not only was it
believed that turbulence could never be described by a single
length scale, the Taylor microscale was not even believed to be a
length scale (c.f. Tennekes and Lumley 1972 A First Course in Turbulence).

Most of these wrong ideas are still promulgated in even recent
texts, in spite of rather conclusive evidence to the contrary, some
of which we continue to review in this lecture.

This is tantamount to continuing to believe the earth is the center
of the universe since one can navigate successfully using only the
pre-Copernican (Ptolemaic) view of the universe. (Or for that
matter that the earth is flat.)
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Summary of G92 equilibrium similarity results

Es(t) = u2l (13)

Ts(t) =
νu2

l
(14)

l(t) = λ (15)

I The energy decays as a power law; i.e., u2 ∝ tn where n is
determined by (or reflected) the initial conditions and was
constant during decay).

I The integral scale, L, (determined from the correlation or the
spectrum) is proportional to λ. This means L/λ is constant
during decay, and is set by the initial conditions.

I Most importantly (and crucially), the scale function for the
non-linear transfer, Ts(t) is NOT u3 (as assumed by von
Karman/Howarth (and Batchelor/Townsend) BUT instead
u3/Rλ.
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It is easy to show (v. G92) by substitution into the spectral energy
equation that the scaled spectral energy function, g(k, ∗) is given
by:

g = −5

n
[f + kf ′]− 10f + 2k

2
f (16)

I This provides a direct closure of the equations, which is in
excellent agreement with experiments (of which there are only
two).

I Note that given the three-dimensional energy spectrum
function shape f , there is only one unknown, the exponent of
the rate at which the energy decays, n. Both f and n depend
on the initial conditions.
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Prediction and data are nearly indistinguishable.

Van Atta/Chen non-linear spectral transfer
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square bar grid wind tunnel experiments. left: Chen and Van Atta, JFM
1968 (Rλ = 53); right: Helland et al. JFM 1977 (Rλ = 237). Each
experiment has a unique spectral shape, reflecting the very different
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And the DNS is also in excellent agreement with the deduced
closure relation (from Wang et al. 2000).
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Figure: left: DNS of Wray 1999 right: DNS of DeBruyn-Kops/Riley 1999

Note that the relative values for kλ > 5 do not change with
increasing wavenumber, implying we do NOT approach K41 with
increasing wavenumber.
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Nonetheless, the DNS was problematical, in large part because of
the integral scale. But this was shown by Wang and George (2002
JFM) to be very much influenced by the computational box-size
relative to where the spectral peak lies relative to it since
L = (π/2u2)

∫∞
0 E (k)/kdk, thereby emphasizing the lowest

wavenumbers (largest scales).

Figure: left: Effect of low wavenumber cutoff (box-size) on integral scale.
right: Effect on turbulence intensity. from Wang and George 2002 JFM
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It is clear that there is not only a lack of low wavenumbers in the
simulations (left), but also a considerable transient at the
beginning (right)– plus something going on at the end. Thus there
is only a limited range over which a true homogeneous turbulence
power law behavior can be approximated. This this can adversely
affect judgements about the overall dynamics of such simulations
and experiments, at least from a theoretical perspective.
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Finite Box Effects on the Energy Spectrum
We can only approximate homogeneous turbulence by DNS or
experiments. Some features are easy; others are more difficult.
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Figure: left: Energy spectra in Taylor variables, 643 simulation
(kp/kL = 6, Rλ ≈ 35). Right: Energy spectra in Taylor variables, 323

simulation (kp/kL = 3, Rλ ≈ 35). (from George et al. 2001)

For DNS spectra the peak in the energy needs to be nearly an
order of magnitude above the lowest wavenumber.
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Finite Box Effects on the Integral Scale Integrand
Two simulations with same resolution (same highest wavenumber
and Reynolds number) showing consequences of placing peak too
close to lowest wavenumber (George, et al. 2001, ”Homogeneous
Turbulence and Its Relation to Realizable Flows”, see refs at end.)
The integral under curves is proportional to the integral scale.
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Taylor variables divided by kλ with peak at 3 times lowest wavenumber,
323 simulation, from George et al. 2001
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The derivative skewness remains problematical
Is it constant? Or does it increase during decay as Rλ decreases
(for fixed initial conditions)?

Part of the problem is clearly related to our difficulties in resolving
or measuring the very highest wavenumbers on which they crucially
depend. This is easily seen from its relation to the integral of the
enstrophy equation:

⟨[∂u1/∂x1]3⟩
⟨[∂u1/∂x1]2⟩3/2

= −3
√
30

14

∫∞
0 k2T (k)dk[∫∞

0 k2E (k)dk
]3/2 (17)

where from the spectral energy equation the numerator is given by:

∫ ∞

0
k2T (k)dk =

d

dt

∫ ∞

0
k2E (k)dk + 2ν

∫ ∞

0
k4E (k)dk (18)

The first term on the right-hand-side is just the dissipation and
depends only on k2E , but the second on k4E is much more
demanding of a simulation or experiment.
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Easy to show that in Taylor variables (George 1992, Phys. Fluids):

SRλ =
30

7

(
n − 1

n

)
− 4

35

∫ ∞

0
k
4
f (k)dk (19)

where f (k) = E/[u2λ], k = kλ, and n < 0 is energy decay
exponent (if power law).

Clearly we should be examining what happens to plots of k2T or
k4E versus k .

If data collapse at all wavenumbers when normalized by u2 and λ,
then SRλ = constant.
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Plotted below are running integrals of SRλ versus kλ.

DeBruyn Kops/Riley 1999 data

S Rlambda integrand
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5123 simulations of decaying turbulence. Left: DeBruyn-Kops/Riley
1998. Right: Wray 1998, (from Wang et al. 2001)

Clearly there is excellent collapse below kλ ≈ 10− 15.

Is problem at the higher wavenumbers due the different physics
than the equilibrium similarity theory? Or is it just due to
resolution or box-size effects (Note: the triadic interactions couple
the large and small scales.)?



. . . . . .

0 5 10
0

0.5

1

1.5

2

kλ

E
/u

2
λ

energy spectrum

0 5 10 15 20
0

0.5

1

1.5

kλ

(k
 λ

)2
E

/u
2

λ

dissipation spectrum

0 5 10 15 20
0

10

20

30

kλ

(k
 λ

)4
E

/u
2

λ
enstrophy dissipation spectrum

Figure: Effect of different L/λ = constant during decay. Blue symbols:
Comte-Bellot/Corrsin 1971, L/λ = 5. Red symbols: DeBruyn-Kops/Riley
DNS, L/λ = 3.4. Solid lines are modified K41 spectral model of
Gamard/George 2000 with different parameters.
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Integral invariants and initial conditions

The relation between E (k) and the two–point correlations for
isotropic turbulence can obtained by substituting the isotropic
relations for Bi , i (⃗r) and carrying out the indicated integration over
the sphere of radius k . The result after some manipulation is:

E (k) =
2

π

∫ ∞

0
[BLL(r) + 2BNN(r)][k sin(kr)]rdr (20)

Lumley (1972) and others have noted that it is possible to Taylor
expand the sin(kr) term in powers of kr and factor the powers of k
outside the integrals, so that the leading term is k2.

The resulting power series in k (even in the limit as k goes to
zero) converges only if the integrals exist for all powers of r , which
is in turn possible only if the tails of the correlations roll-off
exponentially. Differentiation by k yields the relation between
E = Cmk

m and Im, the first non–zero integral invariant, but only
for integer values of m.



. . . . . .

If it is assumed that the spectrum near k = 0 is proportional to kp

where p is a constant and 1 ≤ p ≤ 4 then n = −(p + 1)/2 since
g = 0 at k = 0. Thus it is the shape of the spectrum near the
wavenumber origin that uniquely determines the decay rate, and
therefore at least part of the mysterious argument ‘*’. Note that
contrary to frequent assumption (e.g., Chasnov 1993), p is not
necessarily integer since there is no reason to assume the spectrum
is analytical near k = 0 (v. Lumley 1970).

The recent analysis of Gustafsson and George 2008) shows that
only the Loitsianskii invariant is viable (or constant) in an infinite
domain! There are very interesting consequences for finite
domains, however, which cause the Loitsianskii integral to not be
constant. This in turn opens up the possibility of decay which
depends on the initial conditions, including fractional powers of m
or n, as observed experimentally.
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What does all of this have to do with turbulence
modelling?

I Amazingly MOST of the closure relations fall immediately out
of the equilibrium similarity theory as EXACT – e.g.
dissipation equation, pressure-strain rate,etc. (George 2001

Australasion Meeting) except for return-to-isotropy.

I Thus even if K41 does not apply to non-equilibrium
turbulence, equilibrium similarity does – at least to the flows
considered – and this include all of the ‘calibration’ flows.

I BUT there is one BIG DIFFERENCE: the equilibrium
similarity solution coefficients are flow specific; i.e., each flow
has its (possibly unique) coefficients which are determined by
the initial (or upstream) conditions.

I The more information (structural, etc) you put into the
coefficients, the more general the model.

I This is pretty much what the modelling community concluded
years ago on empirical grounds.



. . . . . .

The real tests of any ‘theory’ are:

1. Can it account for the data?
I This is especially important if others have been satisfied with

the previous explanations.
I In turbulence, experiments often have enough uncertainty to

be used in support of multiple explanations.
I Plus the longer a theory has been viewed as acceptable, the

more difficult it is to overturn it, no matter the evidence or
previously unexplained ambiguities.

2. Can it explain things previously unexplained without
additional hypotheses?

3. Can it predict things previously unobserved without additional
hypotheses?



. . . . . .

Temperature fluctuations behind a grid
The strong dependence of temperature fluctuations on initial
conditions was very much unexplained.



. . . . . .

Temperature fluctuations behind a grid
The equilibrium similarity solution, like the data, have a strong
dependence on initial conditions, but both velocity and
temperature spectra collapse for fixed initial conditions with only
their respective mean square values and the Taylor microscales
(George, W.K. (1990)

Figure: left: Temperature spectra in Taylor variables. Right Velocity
spectra in Taylor variables. Data of Warhaft and Lumley (1988 JFM).
from George 1990.

George, W.K. 1990 Self-Preservation of Temperature Fluctuations in Isotropic

Turbulence. Studies in Turbulence, (T.B. Gatski et al. eds.), Springer Verlag,

Berlin, 514-527.)
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Homogeneous shear flow turbulence

I A curious anomaly of all experiments was the apparent
asymptotic constancy of the Taylor microscale.

I The failure of turbulence intensity to reach a constant value
was also a mystery, as was the apparent dependence on the
upstream conditions.

I George and Gibson (1988,1992 Expts.in Fluids) showed that
the turbulence intensities in homogeneous shear flow
turbulence grew exponentially with a single length scale.

I L/λ was also constant, as was λ itself (i.e, the length scales
defined from the spectrum and correlation function did not
grow during decay).



. . . . . .

The equilibrium similarity theory explained the hitherto
‘anomalous’ homogeneous shear flow experiments.

Figure: left: Semi-log plot of turbulence intensities from Tavoularis
(1985) showing clearly exponential growth. right: Taylor microscales
reach constant asymptote determined by initial (upstream) conditions.
Data of Gibson/Kanellopoulos (1988)[GK1,GK2]; Tavoularis/Corrsin
(1981)[TC]; Harris, Graham, Corrsin (1977)[HCG], and Tavoularis/Karnik
(1989)[TK]. from George and Gibson 1992



. . . . . .

And for each homogeneous shear flow experiment the
spectra indeed collapsed incredibly well with only the
turbulence intensity and Taylor microscale

Figure: Spectra from two different homogeneous shear flow experiments
collapsed in Taylor variables. left: Tavoularis/Corrsin 1981; right:
Kanellopoulous/Gibson 1986. Each experiment has a unique spectral
shape, reflecting the different mean shear rates and upstream conditions.
from George and Gibson 1992
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Homogeneous shear flow spectra of Rohr et al. 1988
These experiments by Rohr, Itsweire, Helland and van Atta at
UCSD also showed exponential growth of the kinetic energy.

Figure: Spectra homogeneous shear flow experiment of Rohr et al. (1988
JFM) collapsed in Taylor variables. left: log-log; right: lin-lin. from

George and Gibson 1992

Note that the spectra are only beginning to asymptote to a
constant value as k → 0, thus limiting the determination of the
integral scales.
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Can equilibrium similarity predict new things?

I 1999 Wang and George submit papars to JFM, Phys. Rev and
J of Turbulence) in which they argued using equilibrium
similarity that there might exist in nature exponentially
decaying solutions which evolved at constant Taylor
microscale scale and for which the spectra (and correlation
functions) collapsed in Taylor variables.

I 1999-2000 JOT, JFM and Phys Rev Letters all reject theory
as being physically impossible, since never observed in nature
before.

I 2005 Vassilicos and Hurst observe exponentially decaying
solutions which evolved at constant Taylor microscale scale
and for which the spectra (and correlation functions)
collapsed in Taylor variables.

I 2008 Phys. Fluids publishes 1999 paper with interesting
foreword.



. . . . . .

Exponentially decaying homogenous turbulence
The predicted (but initially ridiculed) exponentially decaying
solutions ...found seven years later at ICL by Vassilicos and
co-workers – and of all places, downstream of space-filling fractal
grids.
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Figure: Results from Seoud, Hurst and Vassilicos experiments with
fractal grids. left: Mean square streamwise velocity showing exponential
decay. right: Taylor microscale reaching asymptotically constant value.
from George and Wang 2008

I will be quite surprised Christos Vassilicos does not say more
about these and other grid results in the next presentation.
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How about Kolmogorov? Or Obukov? Or ‘local
equilibrium’

I Is there a role for Kolmogorov in these single length scale
flows?

I It appears the answer is NO. ε ̸= u3/L ever.

I These flows march to TWO different non-equilibrium
drummers - one in which the Taylor microscale (and physical
integral scale) are constant. the other in which it evolves.

I Both evolve at constant ratio of L/λ and for both
S∂u/∂x × Rλ = constant (where constant depends on initial
conditions).

I Can these 3 kinds of turbulence co-exist? Or is there an
exclusion principal?

I What happens to non-stationary flows for which these
equilibrium similarity solutions do not exist? Can they behave
as though in ‘local equilibrium’? Or do they do something
very different?
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What does God have to do with all of this?

I Certainly we, like the Astrophysicists, do not need him to set
the initial conditions, even they are indisputably important?

I But – if there is a God and creator – then he surely left us
with a bigger mystery in turbulence than we thought even a
few decades ago.

I And we could certainly use his help figuring out what to do
next.
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