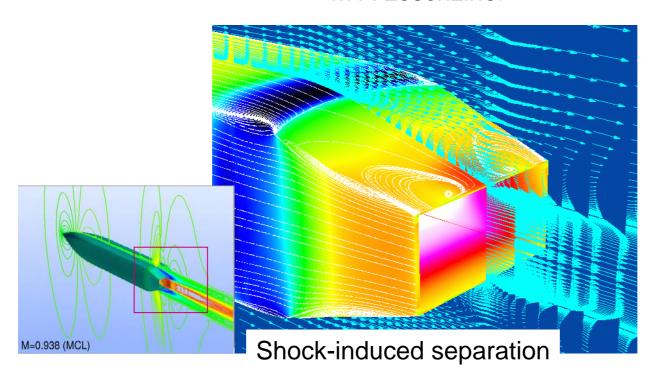
Single-point second-moment turbulence models – why, where and where not

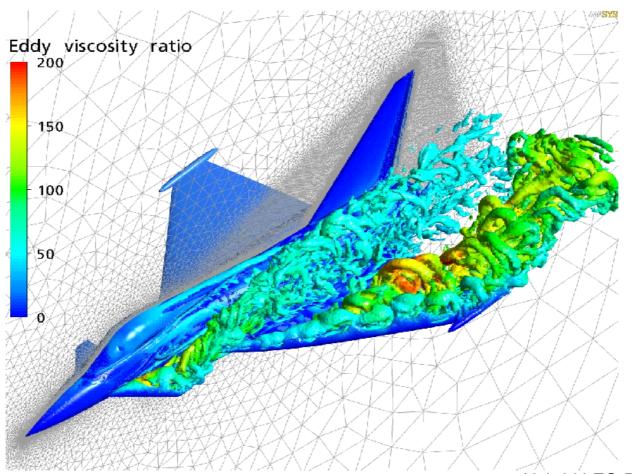
M A Leschziner



The holy grail

We are promised a 'model-free' CFD world

A Boeing 747 is not a homogeneous square box!



Hybrid LES-RANS

Courtesy: ANSYS, Germany

Some scales and estimates

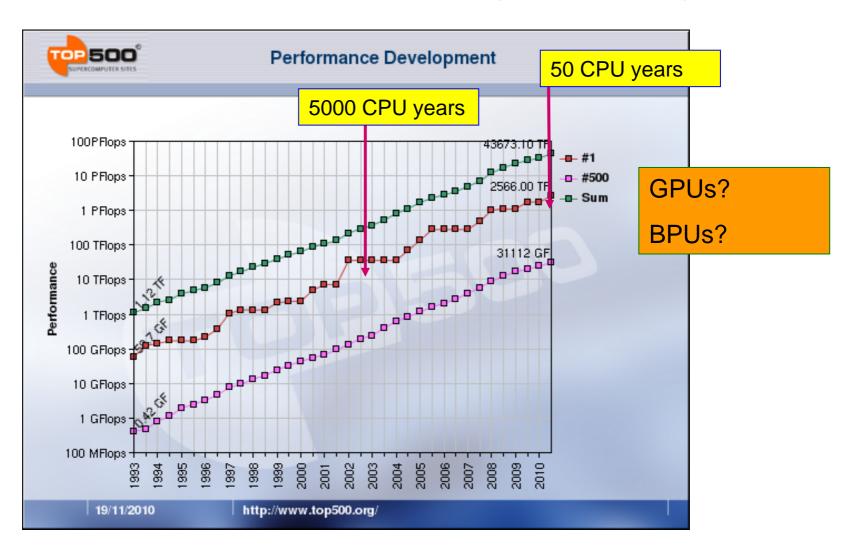
- ▶ Mean-flow scales: t, ℓ
- Kolmogorov scales: τ, η
- > Ratios: $t/\tau \sim Re^{1/2}$, $\ell/\eta \sim Re^{3/4}$
- ▶ Grid: $N_n \sim Re^{9/4}$

- Aircraft: $Re \square 10^8$
- Nodes: $N_n \square 10^{19}$
- Time steps: $N_{\tau} \square 10^6 10^7$
- Current estimate of time of realisation: 2080
- Current estimate for LES: 2045 (based on resolution at Taylor scale)
- Current capability: RANS and RANS-LES hybrids
- 95%+ of all engineering CFD is based on RANS

The cost

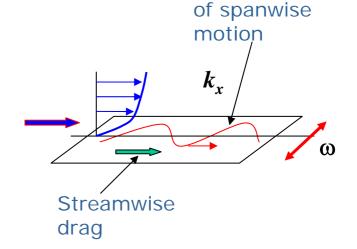
Mesh: 10¹⁹

Cost: 5000 CPU years per 1 second of flying at 1Tflop throughput



DNS - Status

- Model-free DNS used to
 - investigate fundamental physics;
 - examine subgrid-scale models (a-priori testing)
 - > Develop, calibrate and validate RANS models
- Largest channel-flow DNS: $Re_{\tau} = 964$, 2.7x10⁹ nodes (Del Alamo et al, 2004)
- Example: insight into origin of drag reduction by spanwise wall oscillation (Touber & Leschziner, 2010)
 - $Re_{\tau} = 500 \ (\rightarrow 1000)$
 - Drag reduction up to 40%
 - > 0.5x10⁹ nodes, 1M CPU hours

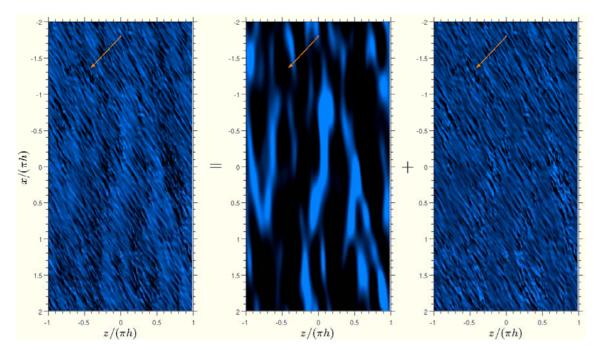


surface wave

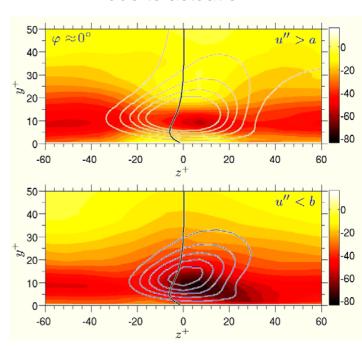
Fundamental mechanism of streak response

- Streak formation and re-orientation mechanisms
- Conditional sampling and averaging
- Decomposition of small streaks/super-streaks
- Modulation mechanisms
- Linear analysis (GOP)

Streak decay, regeneration, reorientation and modulation



Reduction of wall-normal fluctuations around streaks in % due to actuation



The "RANS" equations

Time-averaged framework:

$$\frac{\partial \rho \overline{U}_{i} \overline{U}_{j}}{\partial x_{j}} = -\frac{\partial \overline{P}}{\partial x_{i}} + \frac{\partial}{\partial x_{j}} \mu \left(\frac{\partial \overline{U}_{i}}{\partial x_{j}} + \frac{\partial \overline{U}_{j}}{\partial x_{i}} \right) - \frac{\partial}{\partial x_{j}} \left(\rho \overline{u_{i}} \overline{u}_{j} \right) + \overline{B}_{i}$$

- Unsteady URANS framework
 - Triple decomposition $U = \overline{U} + \underline{u} + \underline{u}'$ Mean Periodic Stochastic

 Phase-average "coherent"

$$\overline{U} \implies \frac{\partial \rho \overline{U}_{j} \overline{U}_{i}}{\partial x_{j}} = \frac{\partial \overline{P}}{\partial x_{i}} + \mu \frac{\partial^{2} \overline{U}_{i}}{\partial x_{j} \partial x_{j}} + \frac{\partial}{\partial x_{j}} \rho \left(-\overline{\tilde{u}_{i} \tilde{u}_{j}} - \overline{u_{i} u_{j}} \right)$$

$$\frac{\tilde{u}}{\partial t} \Longrightarrow \frac{\partial \rho \tilde{u}_{i}}{\partial t} + \frac{\partial \rho U_{j} \tilde{u}_{i}}{\partial x_{j}} = \frac{\partial \tilde{p}}{\partial x_{i}} + \mu \frac{\partial^{2} \tilde{u}_{i}}{\partial x_{j} \partial x_{j}} + \frac{\partial}{\partial x_{j}} \rho \left(\overline{\tilde{u}_{i} \tilde{u}_{j}} + \overline{\tilde{u}_{i} \tilde{u}_{j}} \right) + \frac{\partial}{\partial x_{j}} \rho \left(\overline{\tilde{u}_{i} \tilde{u}_{j}} - \langle u_{i} u_{j} \rangle \right) - \frac{\partial \rho \overline{U}_{i} \tilde{u}_{j}}{\partial x_{j}}$$

Requires closure equations for the periodic and stochastic terms: too complex in practice – URANS use RANS models + $\partial/\partial t$

Nature of Modelling

Reynolds stresses related to known or determinable quantities:

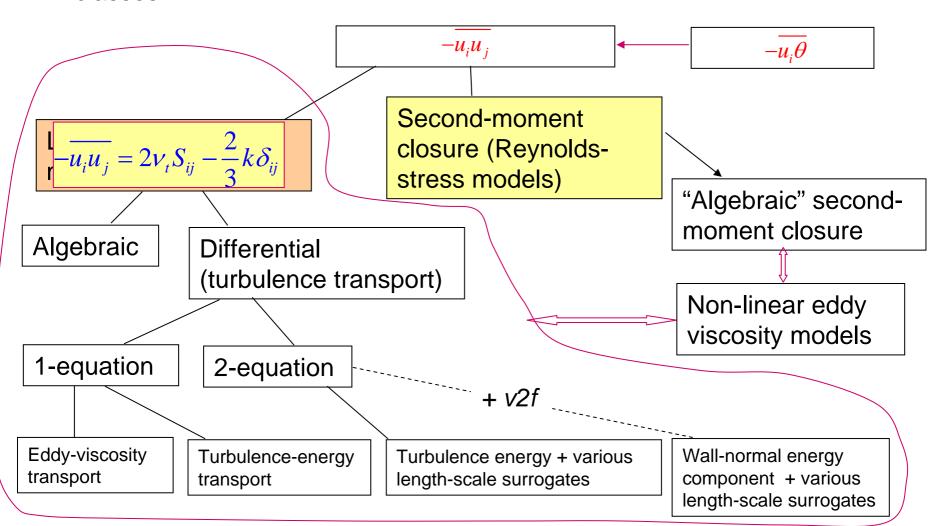
$$\overline{u_{i}u_{j}} = f_{ij} \begin{pmatrix} S_{ij}, \Omega_{ij}, S_{kl}S_{kl}, \Omega_{kl}\Omega_{kl}, \\ \text{length-scale surrogates} \\ \text{turbulence invariates} \end{pmatrix} S_{ij} \text{ Strain tensor}$$

$$\Omega_{ij} \text{ Vorticity tensor}$$

- Ultimately, need to relate to stresses and mean velocity.
- Modelling principles not only "ad-hoc curve fitting"
 - strong fundamental foundation;
 - resolution of anisotropy;
 - correct response to shear and normal straining;
 - correct response to curvature and body forces;
 - frame-invariance ("objectivity");
 - realisability;
 - correct approach to 2-component turbulence at wall and fluid-fluid interfaces:
 - satisfactory numerical stability;
 - economy.

Model types – basic classification

 About 150 models & major variations, many meant for restricted flow classes



Defects of linear eddy-viscosity models

Linear EVM:

- Well suited to thin shear flow
- Much less well suited to separated and highly 3d flow
- No resolution of anisotropy
- Wrong sensitivity to flow curvature, rotation, normal straining and body forces
- Reliant on ad-hoc corrections

Defects are rooted in

- Inapplicability of linear stress-strain relations
- Isotropic nature of viscosity, relating to scalar turbulence properties
- Calibration by reference to simple, near-equilibrium flows
- Excessive extrapolation to complex condition.

Only fundamentally credible alternative

- Modelling based on exact equations for the Reynolds stresses
- > Strong resistance from engineering community complexity

Reynolds-Stress-Transport Modelling

- Introduce the Reynolds decomposition $U_i = \overline{U}_i + u_i$ etc. into the NS equations.
- Subtract from this the corresponding RANS equation.
- Repeating the above, but with the indices i and j interchanged.
- Add the two equations.
- Time-averaging the result:

$$\frac{D\overline{u_{i}u_{j}}}{Dt} = \left\{ \frac{\overline{u_{i}u_{k}}}{\partial x_{k}} \frac{\partial U_{j}}{\partial x_{k}} + \overline{u_{j}u_{k}}}{\frac{\partial U_{i}}{\partial x_{k}}} \right\} + \left(\frac{\overline{f_{i}u_{j}} + \overline{f_{j}u_{i}}}{F_{ij}} \right) - 2v \frac{\overline{\partial u_{i}}}{\partial x_{k}} \frac{\partial u_{j}}{\partial x_{k}} \\
+ \left[\frac{\overline{p_{i}u_{j}}}{\rho} \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \right) \right] - \frac{\partial}{\partial x_{k}} \left\{ \overline{u_{i}u_{j}u_{k}} \right\} + \left[\frac{\overline{pu_{j}}}{\rho} \delta_{ik} + \frac{\overline{pu_{i}}}{\rho} \delta_{jk} \right] - v \frac{\partial \overline{u_{i}u_{j}}}{\partial x_{k}} \right\}$$
Pressure-velocity

 $\succ C_{ij}, P_{ij}, F_{ij}, \Phi_{ij}, \varepsilon_{ij}$ and d_{ij} represent, respectively, stress convection, production by strain, production by body forces (e.g. buoyancy), dissipation, pressure-strain redistribution and diffusion

The Argument for resolving anisotropy

- Production is a key process: it drives the stresses.
- It requires no approximations if stresses and velocity are known
- It is reasonable to assume, tentatively:

Stress = Production x Time
$$(capital = interest \ rate \ x \ time)$$

Exact equations imply complex stress-strain linkage

$$\rho \overline{u_i u}_j \longleftrightarrow -\tau \left\{ \overline{u_i u_k} \frac{\partial U_j}{\partial x_k} + \overline{u_j u_k} \frac{\partial U_i}{\partial x_k} \right\} + \tau \times Body\text{-}force\ production}$$

- Hence, simple EVM stress-strain linkage is inapplicable
- Analogous linkage between scalar fluxes and production

$$\rho \overline{u_i \varphi} \longleftrightarrow -\tau_{\varphi} \left\{ \overline{u_i u_k} \frac{\partial \Phi}{\partial \chi_k} + \overline{u_i \varphi} \frac{\partial U_i}{\partial \chi_k} \right\} + \tau_{\varphi} \times Body\text{-}force\ production$$

• Hence, Fourier-Fick law (eddy-diffusivity approximation) $\rho \overline{u_i \varphi} = -\frac{\mu_t}{\sigma_{\varphi}} \frac{\partial \Phi}{\partial x_i}$ not valid

The equations for thin shear flow

Only one shear strain, only one shear stress

$$\frac{D\overline{u}\overline{v}}{Dt} = -\overline{v}^{2} \frac{\partial \overline{U}}{\partial y} + \overline{\frac{p}{\rho} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)} - \frac{\partial}{\partial y} \left(\overline{u}\overline{v}^{2} + \overline{\frac{pu}{\rho}}\right) + \frac{\mu}{\rho} \frac{\partial u\overline{v}}{\partial y} - \varepsilon_{12}$$

$$\frac{D\overline{u}^{2}}{Dt} \neq -2\overline{u}\overline{v} \frac{\partial \overline{U}}{\partial y} + 2\overline{\frac{p}{\rho}} \frac{\partial u}{\partial x} + 2\overline{\frac{p}{\rho}} \frac{\partial u}{\partial y} + 2\overline{\frac{\mu}{\rho}} \frac{\partial \overline{u}^{2}}{\partial y} - \varepsilon_{11}$$

$$\frac{D\overline{v}^{2}}{Dt} = 0 + 2\overline{\frac{p}{\rho}} \frac{\partial v}{\partial y} - \overline{\frac{\partial v}{\partial y}} \left(\overline{v}^{3} + 2\overline{\frac{pv}{\rho}}\right) + 2\overline{\frac{\mu}{\rho}} \frac{\partial \overline{v}^{2}}{\partial y} - \varepsilon_{22}$$

$$\sum = k - equation$$

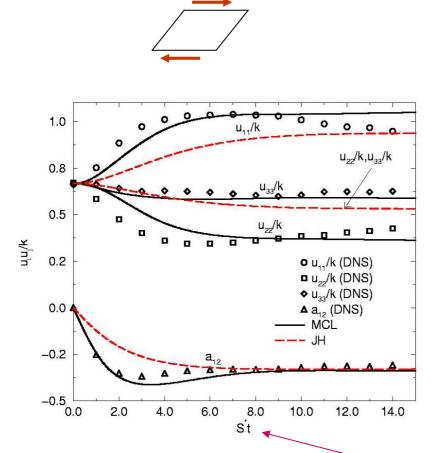
$$\frac{D\overline{w}^{2}}{Dt} = 0 + 2\overline{\frac{p}{\rho}} \frac{\partial w}{\partial z} - \overline{\frac{\partial v}{\partial x}} \left(\overline{v}\overline{w}^{2}\right) + 2\overline{\frac{\mu}{\rho}} \frac{\partial \overline{w}^{2}}{\partial y} - \varepsilon_{33}$$
Anisotropy
$$\sum = 0 \qquad \sum = 2\varepsilon$$

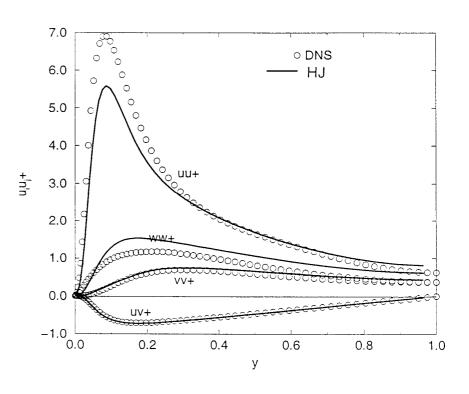
Anisotropy in simple shear

- Homogeneous shear
 - Development in time of stresses normalized by k

Channel flow

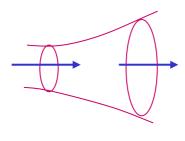
Normal and shear stresses





Strain rate x time

The importance of anisotropy: expansion (deceleration)



Positive generation

$$\frac{D\overline{u^2}}{Dt} = -2\overline{u^2}\frac{\partial U}{\partial x} + \dots$$

Negative generation

$$\frac{D\overline{v^2}}{Dt} = \overline{v^2} \frac{\partial U}{\partial x} + \dots$$

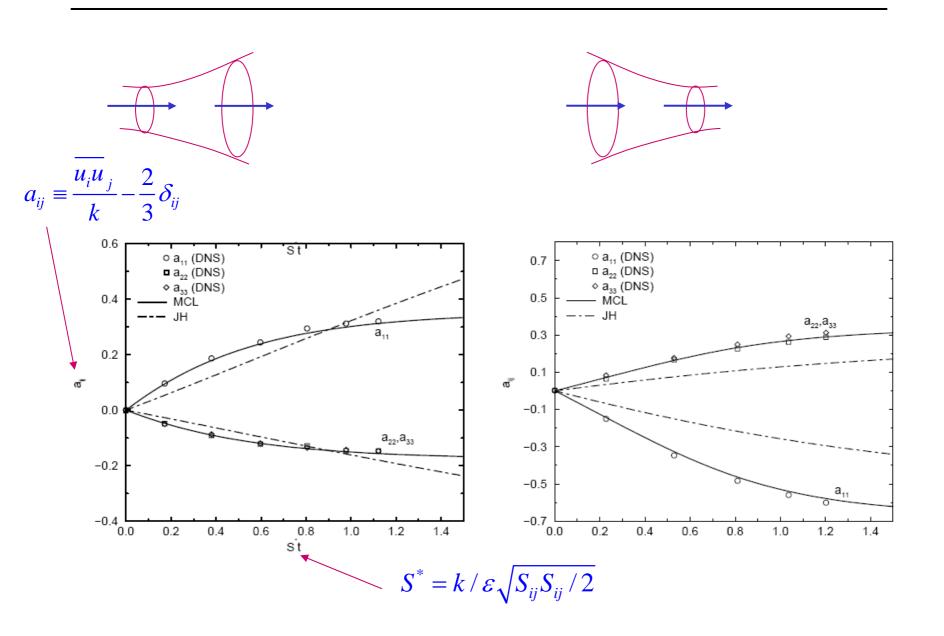
$$\frac{D\overline{w^2}}{Dt} = \overline{w^2} \frac{\partial U}{\partial x} + \dots$$

$$\frac{Dk}{Dt} = -\frac{1}{2}(2\overline{u^2} - \overline{v^2} - \overline{w^2})\frac{\partial U}{\partial x} + \dots$$

 Low or negative k-production, relative to very high EVM production Eddy viscosity

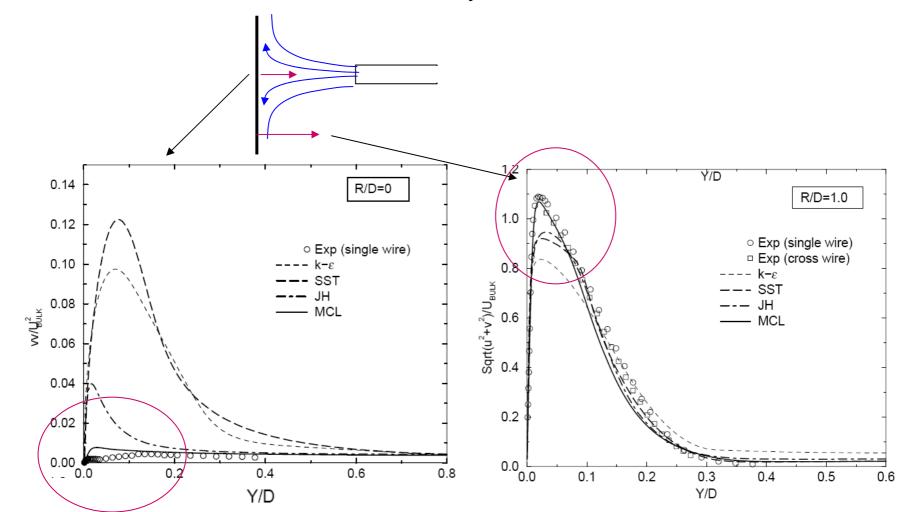
$$2C_{\mu}\frac{k^{2}}{\varepsilon}\left(\frac{\partial U}{\partial x}\right)^{2}$$

Anisotropy in expansion and contraction

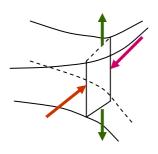


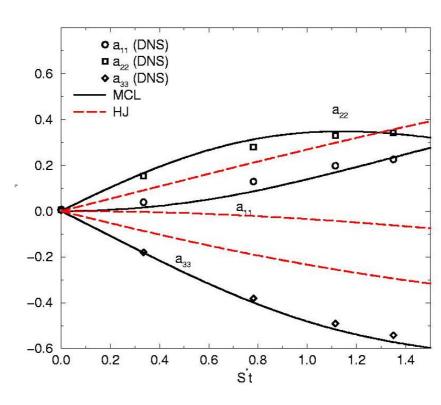
Round impinging jet

Wall-normal stress and mean velocity



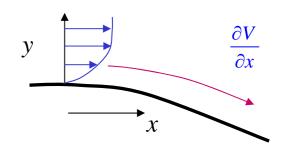
Anisotropy in plain strain



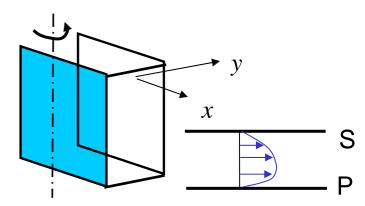


Other sensitivities

 Strong effect of curvature on anisotropy and shear stress.



 Strong effects of rotation on anisotropy and shear stress



- Inapplicability of Fourier-Fick law in scalar transport
 - Production of flux vector:

$$P_{u_i\phi} = -\overline{u_i u_k} \frac{\partial \Phi}{\partial x_k} - \overline{u_i \varphi} \frac{\partial U_i}{\partial x_k}$$

Reynolds-Stress-Transport Modelling

Closure of exact stress-transport equations

$$\frac{D\overline{u_{i}u_{j}}}{Dt} = -\left\{ \overline{u_{i}u_{k}} \frac{\partial U_{j}}{\partial \chi_{k}} + \overline{u_{j}u_{k}} \frac{\partial U_{i}}{\partial \chi_{k}} \right\} + (Pressure - velocity)$$

$$C_{ij} = Advective Transport$$

$$P_{ij} = Production$$

+ Diffusion – Dissipation

- Pressure-velocity, dissipation and diffusion require approximation
- About 10-15 major closures forms
- Modern closure aims at realisability, 2-component limit, coping with strong inhomogeneity and compressibility
- Additional equations for dissipation tensor *E_{ii}*
- At least 7 pde's in 3D (up to 17 in heat/scalar transport)
- Numerically difficult in complex geometries and flow
- Can be costly
- Dissipation and pressure-velocity are major sources of error

The exact dissipation-rate equation

$$\frac{\mathbf{D}\varepsilon}{\mathbf{D}t} = \underbrace{\frac{\partial \varepsilon}{\partial t}}_{L_{\varepsilon}} + \underbrace{\frac{\partial U_{k}\varepsilon}{\partial x_{k}}}_{C_{\varepsilon}}$$

$$= \underbrace{\begin{bmatrix} -2\nu \left(\frac{\partial u_{i}}{\partial x_{l}} \frac{\partial u_{k}}{\partial x_{l}} + \frac{\overline{\partial u_{l}}}{\partial x_{i}} \frac{\partial U_{l}}{\partial x_{k}}\right) \frac{\partial U_{i}}{\partial x_{k}}}_{P_{\varepsilon}^{1} + P_{\varepsilon}^{2}} \underbrace{\begin{bmatrix} -2\nu \overline{u_{k}} \frac{\partial u_{i}}{\partial x_{k}} \frac{\partial^{2} U_{i}}{\partial x_{k}} \underbrace{P_{\varepsilon}^{3}}_{P_{\varepsilon}^{2}} \end{bmatrix}} \\
+ \underbrace{\frac{\partial}{\partial x_{k}} \left(\nu \frac{\partial \varepsilon}{\partial x_{k}}\right)}_{\mathcal{D}_{\varepsilon}^{\nu}} + \underbrace{\frac{\partial}{\partial x_{k}} \left(-\overline{u_{k}\varepsilon}\right)}_{\mathcal{D}_{\varepsilon}^{t}} + \underbrace{\frac{\partial}{\partial x_{k}} \left(-\frac{2\nu}{\rho} \frac{\overline{\partial p}}{\partial x_{i}} \frac{\partial u_{k}}{\partial x_{i}}\right)}_{\mathcal{D}_{\varepsilon}^{p}} \underbrace{P_{\varepsilon}^{t}}_{\varepsilon}}$$

Modelled dissipation-rate equation

$$\frac{D\varepsilon}{Dt} = \frac{\partial}{\partial x_k} \left[v \delta_{kl} + C_\varepsilon \frac{k}{\varepsilon} \overline{u_k u_l} \right] \frac{\partial \varepsilon}{\partial x_l} + \text{"special" model fragments}$$

$$+ \text{"special" model fragments}$$

 $\frac{\varepsilon}{k} \{ C_{\varepsilon 1} (\text{Production of } k) - C_{\varepsilon 2} f_{\varepsilon} (\text{Dissipation of } k) \}$

- In energy equilibrium, $P_k = \varepsilon$, and the imbalance is absorbs by diffusion
- Transport equations for \mathcal{E}_{ii} are too complex as basis for modelling
- Anisotropy in dissipation algebraic approximations of the form:

$$\varepsilon_{ij} = \underbrace{f_e \frac{2}{3} \varepsilon \delta_{ij}} + (1 - f_e) \frac{\overline{u_i u_j}}{k} \varepsilon$$

• In most models, $f_e = 1$ reflecting assumption of small-scale isotropy

Closure – stress diffusion

- Regarded as least influential (suggested by DNS/LES).
- Represented as gradient-diffusion with tensorial diffusivity.
- Simplest model: $Diff_{ij} = -\frac{\partial}{\partial x_{i}} \left\{ c_{d} \frac{k}{\varepsilon} \overline{u_{k}} \overline{u_{m}} \frac{\partial \overline{u_{j}} \overline{u_{j}}}{\partial x_{...}} \right\}$
- Based on observation that the most important fragment in the exact diffusion term is $\overline{u_k u_i u_j}$.
- It can be shown, via transport equations for triple correlation, $u_k u_i u_j$, that the production of these triple correlations is by gradients of stresses of the form $P_{ijk} = -\overline{u_k u_m} \frac{\partial \overline{u_j u_j}}{\partial r} + \dots$
- Suggests (also on dimensional grounds)

$$Diff_{ij} = -\frac{\partial}{\partial x_{i}} \left\{ c(\text{time scale}) \times (\text{production}_{ijk}) \right\}$$

Closure – pressure-strain / velocity

- Extremely important: responsible for redistribution among normal stresses. Regarded as the hardest term to model
- Pressure-velocity dictates energy transfer and hence v^2
- But v^2 dictates uv

$$\frac{D\overline{u}\overline{v}}{Dt} = -\overline{v}^{2} \frac{\partial \overline{U}}{\partial y} + \overline{\rho} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) - \frac{\partial}{\partial y} \left(\overline{u}\overline{v}^{2} + \overline{\rho}\overline{u} \right) + \frac{\mu}{\rho} \frac{\partial \overline{u}\overline{v}}{\partial y} - \varepsilon_{12}$$

$$\frac{D\overline{u}^{2}}{Dt} \neq -2\overline{u}\overline{v} \frac{\partial \overline{U}}{\partial y} + 2\overline{\rho} \frac{\partial u}{\partial x} + 2\overline{\rho} \frac{\partial u}{\partial y} + 2\overline{\rho} \frac{\partial u}{\partial y} + 2\overline{\rho} \frac{\partial u}{\partial y} - \varepsilon_{11}$$

$$\frac{D\overline{v}^{2}}{Dt} = 0 + 2\overline{\rho} \frac{\partial v}{\partial y} - \frac{\partial}{\partial y} \left(\overline{v}^{3} + 2\overline{\rho}\overline{v} \right) + 2\overline{\rho} \frac{\partial v}{\partial y} - \varepsilon_{22}$$

$$\frac{D\overline{w}^{2}}{Dt} = 0 + 2\overline{\rho} \frac{\partial w}{\partial z} - \frac{\partial}{\partial x} \left(\overline{v}\overline{w}^{2} \right) + 2\overline{\rho} \frac{\partial w}{\partial y} - \varepsilon_{33}$$

Closure – pressure-strain

- Subject to constrains:
 - ➤ Isotropisation: transfer of energy from largest stress to lower ones
 - ➤ Inhibition of isotropisation at walls/interfaces (splatting, reflection)
 - > shear stresses have to decline as isotropisation progresses
- Guidance provided by 'exact' integration for pressure-fluctuations and substitution in pressure-velocity correlation

$$\Phi_{ij} = \frac{\overline{p}}{\rho} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \qquad A_{ij}$$

$$= \frac{1}{4\pi} \int_{V} \left\{ \left(\frac{\partial^2 u_i u_m}{\partial x_i \partial x_m} \right)^* \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right\} \frac{dV(\mathbf{x}^*)}{|\mathbf{x} - \mathbf{x}^*|}$$

$$+ \frac{1}{4\pi} \int_{V} \left\{ 2 \left(\frac{\partial u_m}{\partial x_l} \right)^* \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \left(\frac{\partial U_l}{\partial x_m} \right)^* \right\} \frac{dV(\mathbf{x}^*)}{|\mathbf{x} - \mathbf{x}^*|} + \text{body-force and surface terms}$$

Closure – pressure-strain

Suggests the general Ansatz:

$$\Phi_{ij} = \varepsilon A_{ij} \{a_{ij}\} + k B_{ijkl} \{a_{ij}\} \frac{\partial U_k}{\partial x_l} \qquad \left\{ a_{ij} \equiv \frac{\overline{u_i u_j}}{k} - \frac{2}{3} \delta_{ij} \right\}$$

(+body-force and wall terms)

- Most complex model is cubic
- Much more popular is the quasi-linear form

$$\Phi_{ij} = -C_1 \frac{\varepsilon}{k} \left(\overline{u_i u_j} - \frac{2}{3} \delta_{ij} k \right) - C_2 \left(P_{ij} - \frac{2}{3} \delta_{ij} P_k \right)$$

(+body-force and wall terms)

- This is a sink term in the second-moment equations, depressing anisotropy in proportion to anisotropy of stresses and productions
- Ensures that anisotropy in stresses and productions drives energy from above-average normal stresses to below-average ones
- Coefficients sensitized to anisotropy invariants, turbulence Reynolds number.....in lieu of non-linear expansions

Closure - pressure-strain

$$\phi_{ij}^* = \phi_{ij1}^* + \phi_{ij2}^* + \phi_{ij1}^{inh} + \phi_{lj2}^{inh}$$
 (6)

with

with
$$\phi_{ij1}^{*} = -c_{1}\bar{\rho}\bar{\epsilon}^{*}\left[a_{ij} + c_{1}'\left(a_{ik}a_{kj} - \frac{1}{3}A_{2}\delta_{ij}\right)\right] - \bar{\rho}\bar{\epsilon}^{*}A^{\frac{1}{2}}a_{ij}$$

$$\phi_{ij2}^{*} = -0.6\left(P_{ij} - \frac{1}{3}\delta_{ij}P_{kk}\right) + 0.3a_{ij}P_{kk}$$

$$-\frac{0.2\bar{\rho}}{\bar{k}}\left[\overline{u_{k}''u_{j}''}\overline{u_{i}''u_{i}''}\left(\frac{\partial \bar{u}_{k}}{\partial x_{l}} + \frac{\partial \bar{u}_{l}}{\partial x_{k}}\right) - \overline{u_{l}''u_{k}''}$$

$$\times \left(\overline{u_{i}''u_{k}''}\frac{\partial \bar{u}_{j}}{\partial x_{l}} + \widehat{u_{j}''u_{k}''}\frac{\partial \bar{u}_{i}}{\partial x_{l}}\right)\right] - c_{2}[A_{2}(P_{ij} - D_{ij}) + 3a_{mi}a_{nj}$$

$$\times (P_{mn} - D_{mn})] + c_{2}'\left\{\left(\frac{7}{15} - \frac{A_{2}}{4}\right)\left(P_{ij} - \frac{1}{3}\delta_{ij}P_{kk}\right)\right\}$$

$$+ 0.1\left[a_{ij} - \frac{1}{2}\left(a_{ik}a_{kj} - \frac{1}{3}\delta_{ij}A_{2}\right)\right]P_{kk} - 0.05a_{ij}a_{lk}P_{kl}$$

$$+ \frac{0.1}{\bar{k}}\left[\left(\widehat{u_{i}''u_{m}''}P_{mj} + \widehat{u_{j}''u_{m}''}P_{mi}\right) - \frac{2}{3}\delta_{ij}\widehat{u_{l}''u_{m}''}P_{ml}\right]$$

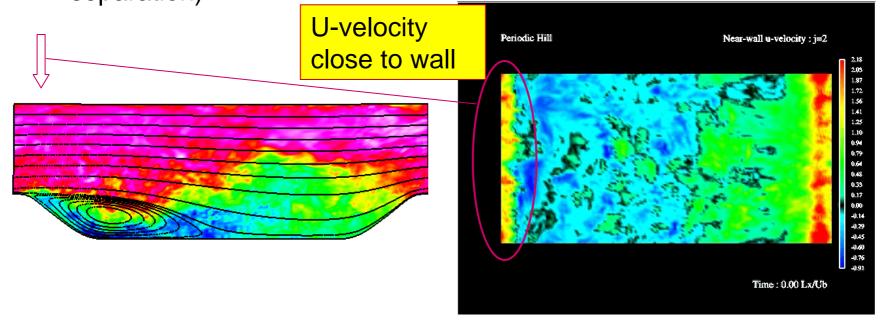
$$+ \frac{0.1}{\bar{k}^{2}}\left[\widehat{u_{l}''u_{l}''}\widehat{u_{k}''u_{j}''} - \frac{1}{3}\delta_{ij}\widehat{u_{l}''u_{m}''}\widehat{u_{k}''u_{m}''}\right]$$

$$\times \left[6D_{lk} + 13\bar{\rho}\bar{k}\left(\frac{\partial \bar{u}_{l}}{\partial x_{k}} + \frac{\partial \bar{u}_{k}}{\partial x_{l}}\right)\right] + \frac{0.2}{\bar{k}^{2}}\widehat{u_{l}''u_{l}''}\widehat{u_{k}''u_{j}''}(D_{lk} - P_{lk})\right\}$$

Model Performance

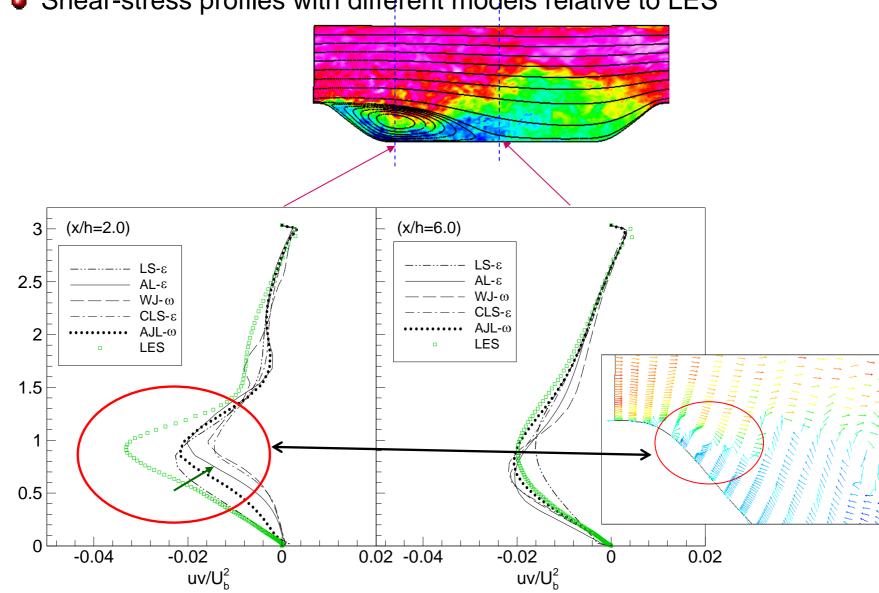
- Construction and calibration rely heavily on highly-resolved experimental & simulation data
- Done mostly by reference to thin-shear-flow data
- Models work well for many flows
- Notable exception: flow separating from curved surfaces (2d & 3d)

Associated with dynamics of highly unsteady separation (& preseparation)



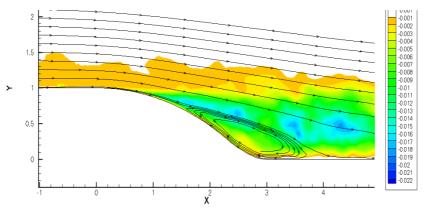
Separation from curved surface

Shear-stress profiles with different models relative to LES

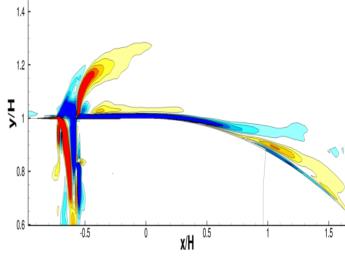


Model developments

- Model defects are difficult to cure, but efforts are ongoing
- Example: re-examination of dissipation and pressure-velocity interaction terms in separation from curved ramp
- Foundation: highly-resolved simulation near DNS, 25M nodes

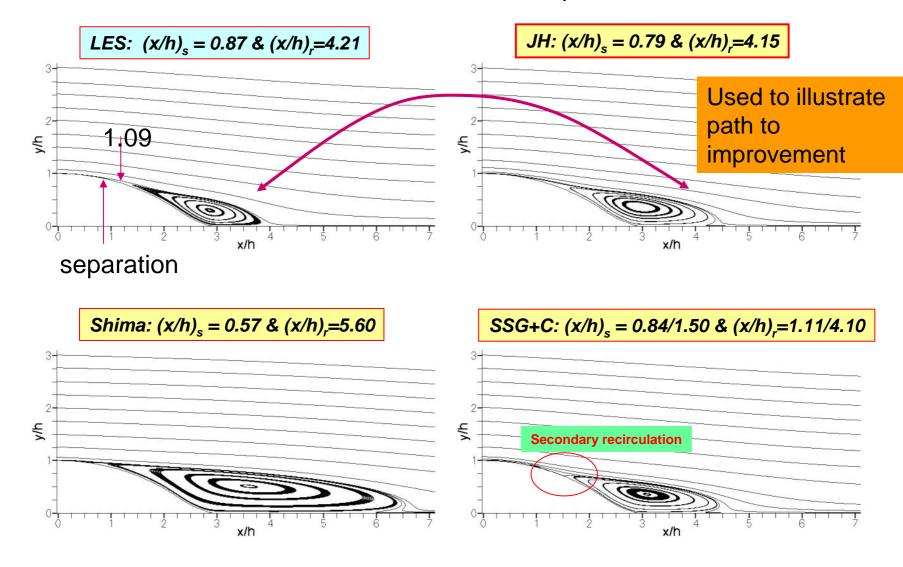


- $Re_H = 13700$; $Re_{\Theta} = 1150$
- Second moments, invariants, budgets of all second moments....
- Part of larger study on separation control with synthetic jets
- Experimental data



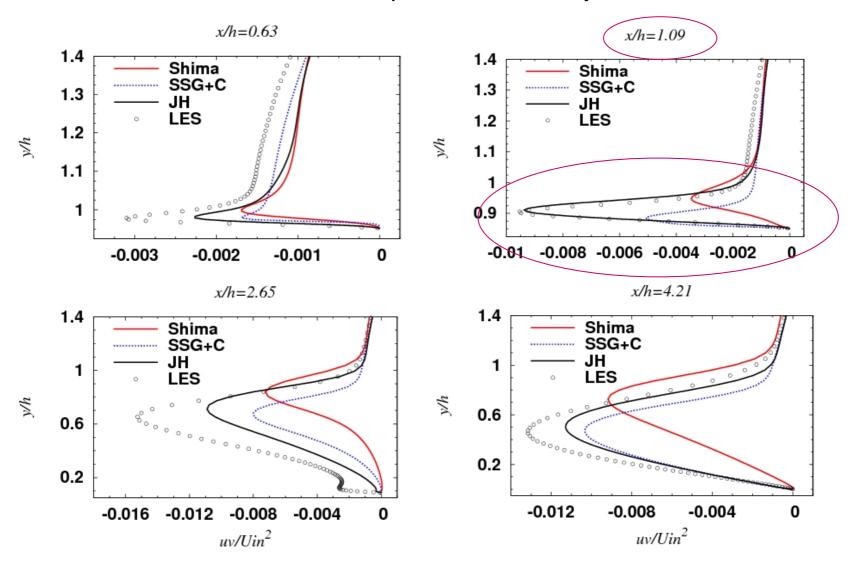
Starting point

Choice of basic model, based on full computation



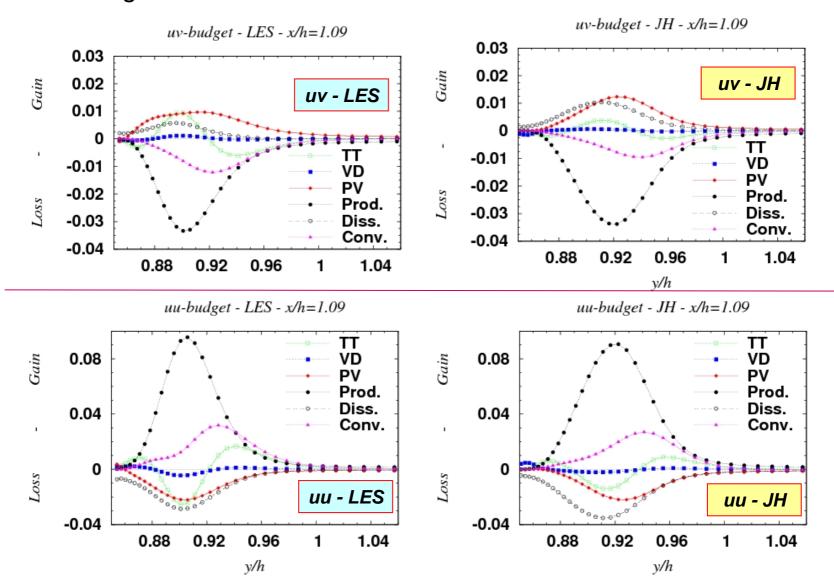
Defect identification

Focus on shear stress in separated shear layer



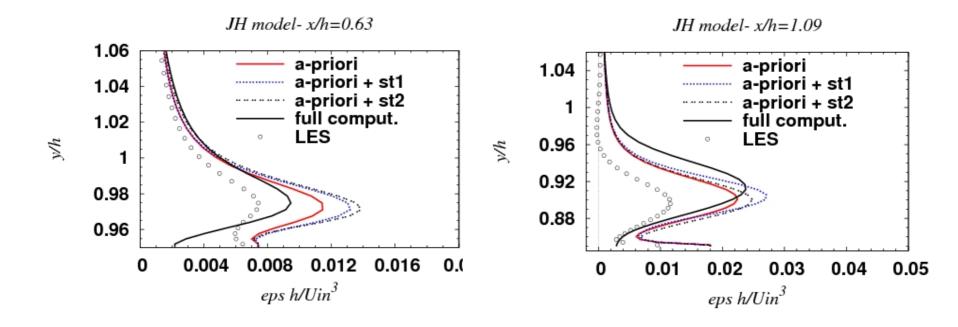
Defect identification

Budgets for uv and uu



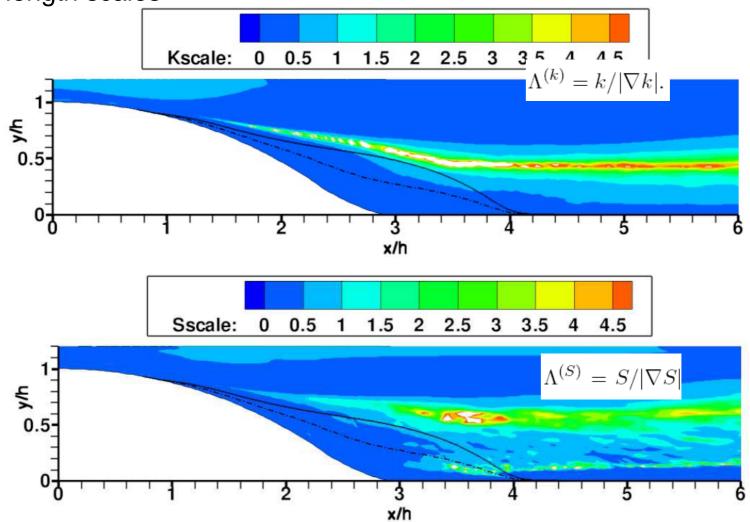
Model fragmentation - dissipation

- A-priori study of dissipation-rate equation
- Isolated solution of equation
- LES strains and stresses input into equation
- Only output is dissipation
- Examination of a range of corrections in efforts to procure agreement with LES data for dissipation rate



Model fragmentation - dissipation

 Ongoing efforts to sensitize dissipation to mean-flow/turbulence length scales



Model fragmentation – dissipation components

• A-priori study of dissipation anisotropy – stresses and ε from LES into

$$\varepsilon_{ij} = f_s \varepsilon_{ij}^* + (1 - f_s) \frac{2}{3} \delta_{ij} \varepsilon$$

$$Various proposals$$

$$\varepsilon_{ij}^* = \frac{\varepsilon}{k} \frac{\overline{u_i u_j} + (\overline{u_i u_j} n_j n_k + \overline{u_j u_k} n_i n_k + \overline{u_k u_l} n_j n_k n_i n_j) f_d}{1 + \frac{3}{2} \frac{u_p u_q}{k} n_p n_q f_d}$$

$$f_s = 1 - \sqrt{AE}$$

$$f_d = (1 + 0.1 \operatorname{Re}_t)^{-1}$$

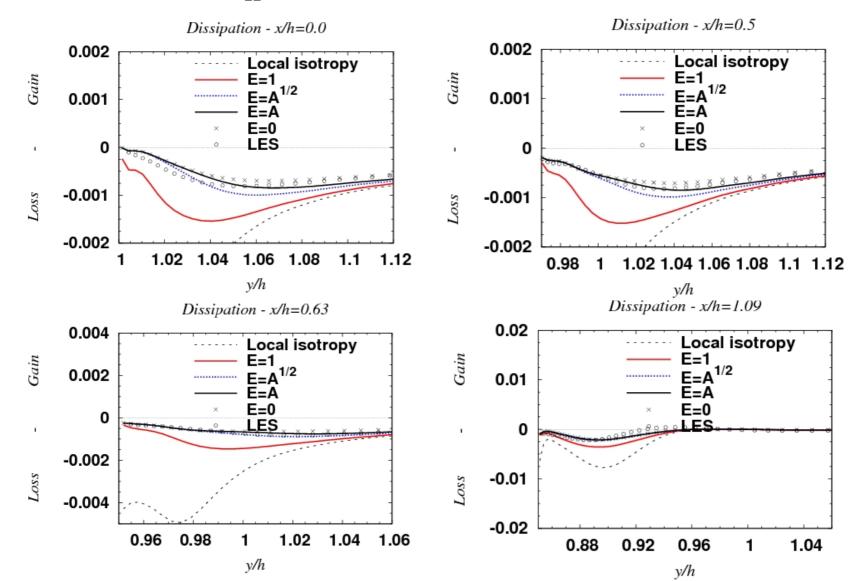
Weighting function sensitized to anisotropy invariant

$$A = 1 - \frac{9}{8} (A_2 - A_3) \qquad A_2 = a_{ij} a_{ij}; \quad A_3 = a_{ij} a_{jk} a_{ki}; \quad a_{ij} = \frac{u_i u_j}{k} - \frac{2}{3} \delta_{ij}$$

$$A: 0.1 \ 0.2 \ 0.3 \ 0.4 \ 0.5 \ 0.6 \ 0.7 \ 0.8$$

Model fragmentation – dissipation components

• Component ε_{22}



Model fragmentation – pressure-velocity

Quasi-linear approximation

$$\Phi_{ij} = -C_1 \frac{\varepsilon}{k} \left(u_i u_j - \frac{2}{3} \delta_{ij} k \right) - C_2 \left(P_{ij} - \frac{2}{3} \delta_{ij} P_k \right)$$
 (+wall-reflection terms)

 Coefficients sensitized to anisotropy invariants, in compensation to the omission of high-order fragments

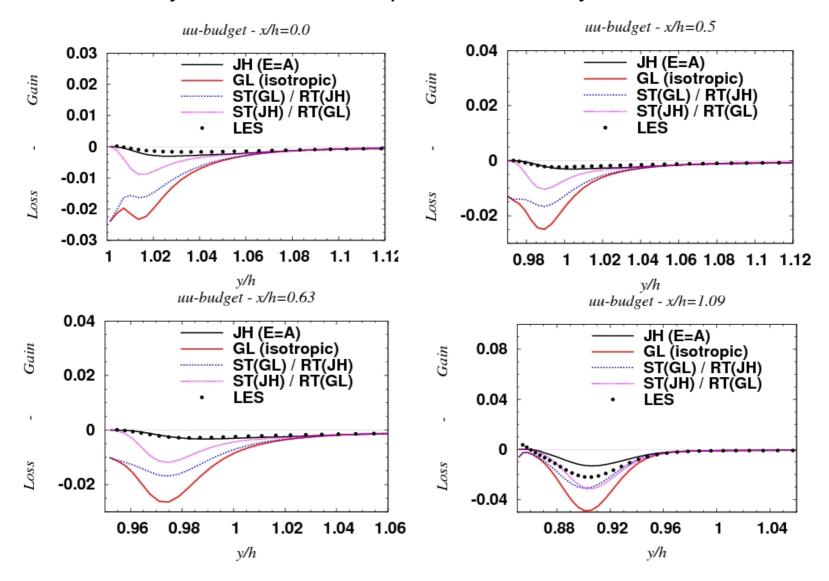
$$C_{1} = C + \sqrt{AE} \qquad C = 2.5A[\min\{0.6, A_{2}\}]^{1/4} f$$

$$f = \min\left\{ \left(\frac{Re_{t}}{150}\right)^{3/2}, 1 \right\}$$

$$C_{2} = 0.8A^{1/2}$$

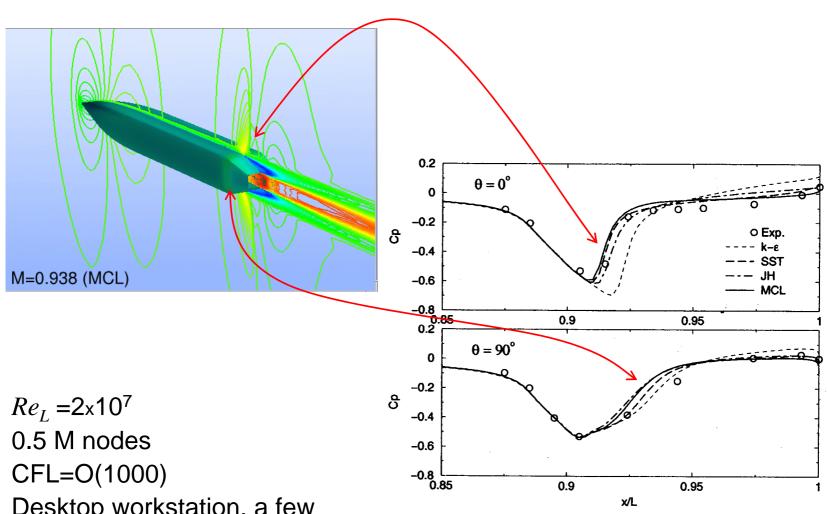
Model fragmentation – pressure-velocity

• Sensitivity of coefficients to pressure-velocity interaction of $\overline{u}\overline{u}$



Shock-induced Separation on 3D Jet-Afterbody - RSTM

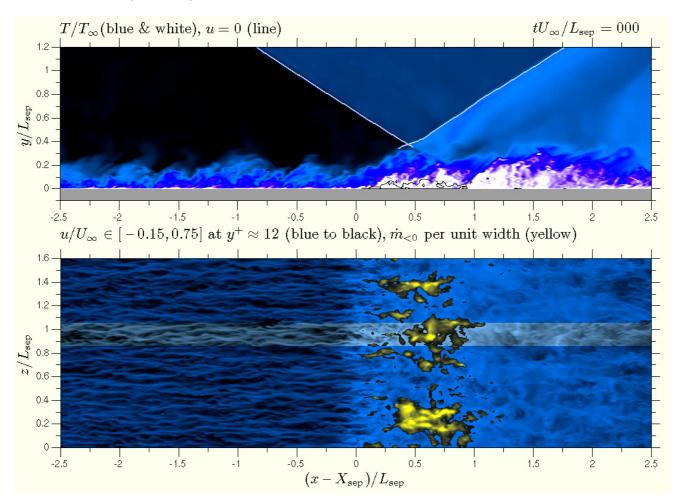
General view and surface-pressure coefficient



Desktop workstation, a few **CPU** hours

Shock-induced Separation on flat plate – LES

- Touber and Sandham, 2010
- Re_{τ} =3000, M=2.3
- 20 M nodes, 240,000 CPU hours



Concluding remarks

- Fundamentally, Second-moment closure is far superior to eddyviscosity modelling.
- In reality, closure is extremely challenging, because the anisotropy is an extremely influential model element and is difficult to approximate.
- Redistribution and dissipation are especially influential.
- Many ways of construction models, but all involve calibration.
- Does involve "curve-fitting", but is based on rational principles and physically tenable assumptions.
- Little used, because of "the-simpler-the-better" attitude.
- Second-moment closure is inappropriately complex in (most) thin shear flows, but the only fundamentally solid approach in complex strain.