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beginning of turbulence theory

* Reynolds – the velocity field in a turbulent flow should be de-

composed into a mean and a fluctuation u = U + u′ where U = 〈u〉
is some appropriate average (ensemble preferably).

* goal – predict the flow statistics; most simply, the mean flow U.
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* closure problem – the equation derived from Navier-Stokes for

U depends on 〈uu〉 through the quadratic nonlinearity (convective

term) – a new unknown. We start from

u̇ + u · ∇u = −∇p + ν∇2u ∇ · u = 0

and obtain

U̇ + U · ∇U = −∇P −∇
〈

u′u′〉+ ν∇2U

u̇′ + U · ∇u′ + u′ · ∇U + u′ · ∇u′ −
〈

u′ · ∇u′〉 = −∇p′ + ν∇2u′

underdetermined equations: true, but useless for prediction

Problem for Reynolds - he started with a good equation and de-

rived two bad ones (so, unhappy reviewers).
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Turbulence is described by unclosed Reynolds-averaged Navier-

Stokes (RANS) equations. ‘RANS models’ seek to close these

equations.

A first step: Boussinesq (1877) had already proposed

〈u′
iu

′
j〉 = νt

(

∂Ui

∂xj
+

∂Uj

∂xi

)

where νt is an eddy viscosity (flow property, νt/ν ≫ 1)

How to find νt ?
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Prandtl’s mixing length model

In the boundary-layer approximation (∂/∂x ≪ ∂/∂y):

U
∂U

∂x
+ V

∂U

∂y
= −∂P

∂x
− ∂

∂y

〈

u′v′
〉

+ ν
∂2U

∂2y

Close this mean flow equation, ignoring fluctuation equation.

〈

u′v′
〉

= νt
∂U

∂y
νt = CL2

∣
∣
∣
∣
∣

∂U

∂y

∣
∣
∣
∣
∣

where L is a ‘characteristic length:’

(distance to wall, width of shear layer, ...)
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limitations of the mixing length model

* ‘Natural’ choice for L only exists for thin shear flows.

* The constant C is flow-dependent.

* We ignored the fluctuation equations entirely; consequently

* the turbulent viscosity was determined by mean flow properties,

not by turbulence properties.

(Such modeling works because of self-similarity.)
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Harlow, Launder, Spaulding: the two-equation model

Recall the eddy viscosity hypothesis
〈

u′
iu

′
j

〉

= νt

(

∂Ui

∂xj
+

∂Uj

∂xi

)

.

research program:

* Express νt in terms of two turbulence properties equivalent to a

length- and a time-scale.

* Derive transport equations for these properties from the fluctu-

ation equation.

We consider only these equations, not the validity of the eddy viscosity as a

representation of turbulence.
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Turbulent fluctuations are the subject of

G I Taylor’s Statistical Theory of Turbulence

Turbulence is a random field, each realization of which is governed

by the Navier-Stokes equations.

Suppose there is no mean flow. Attention is focused entirely on the

fluctuations. Their simplest statistical property is the two-point

correlation U(x, x′) = 〈u(x)u(x′)〉.

kinematic simplifications:

1. homogeneity U(x,x′) = U(x − x′) = U(r)

2. Fourier transformation U(κ) =

∫

dr U(r) exp(iκ · r)
3. isotropy: U(κ) = U(κ)P(κ) P takes care of the solenoidal condition
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analytical formulation

Fluctuations are characterized by the energy spectrum

E(κ) = 2πκ2U(κ) total energy =

∫ ∞

0

dκ E(κ)

NSE imply an (unclosed) spectral evolution equation for homoge-

neous isotropic turbulence

Ė(κ, t) = P(κ, t) − T(κ, t) − 2νκ2E(κ, t)

1. P(κ, t) is a forcing (‘production’) term

2. T(κ, t) is energy transfer between different wavenumbers; it is

a third-order moment satisfying
∫ ∞

0
dκ T(κ, t) = 0
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In view of energy conservation property, T(κ) =
∂

∂κ
F(κ) where

F(0) = F(∞) = 0. (F is the scale-to-scale energy flux). Then

Ė(κ) = P(κ) − ∂

∂κ
F(κ) − 2νκ2E(κ)

Two important moments are
∫ ∞

0
dκ E(κ) = k

∫ ∞

0
dκ 2νκ2E(κ) = ǫ

total energy and dissipation.

Note k = 1
2〈u

′ ·u′〉 and ǫ = 1
2ν〈∇u′ : ∇u′〉 are single-point moments.

To advance beyond kinematics, we need the Kolmogorov theory.
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highlights of the Kolmogorov theory

In steady-state forced isotropic turbulence,
∫ ∞

0
dκ P(κ) = P = ǫ

If forcing is concentrated at length scale ℓ, then a universal spec-

trum E(κ) = E(κ; ℓ, ǫ) exists.

For κ ≫ ℓ−1, E(κ) = CKǫ2/3κ−5/3 (with a viscous cutoff at κd ∝
(ǫ/ν3)1/4)

The Kolmogorov theory asserts that this spectrum is a ‘universal

equilibrium’ (Batchelor): it is an attractor for the statistics of small

scales of motion in any turbulent flow.

* Stress that it is an attractor, not necessarily a permanent feature.

* By characterizing the spectrum by two parameters ℓ and ǫ, this

theory supports the possibility of two-equation modeling.
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problem statement

Turbulent motion couples an infinite number of scales of motion.

Yet Kolmogorov theory suggests a description by a few parameters.

modeling asks a theoretical question:

Can turbulence evolution be described by equations
for these parameters alone?

Kolmogorov theory does not answer this question.
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Let’s try to find these equations by taking moments of

Ė(κ) = P(κ) − ∂

∂κ
F(κ) − 2νκ2E(κ)

The moments of order zero are
∫ ∞

0
dκ E(κ, t) = k kinetic energy

∫ ∞

0
dκ P(κ, t) = P production

∫ ∞

0
dκ T(κ, t) = 0 (energy conservation)

∫ ∞

0
dκ 2νκ2E(κ, t) = ǫ dissipation

They satisfy the energy balance k̇ = P −ǫ suggesting k, ǫ as natural

variables. If so, we need an equation for dissipation rate ǫ.
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towards a dissipation rate equation

Take another moment: the exact equation for ǫ is found from
∫ ∞

0
dκ 2νκ2 Ė(κ, t) =

∫ ∞

0
dκ 2νκ2

[

P(κ, t) − T(κ, t) − 2νκ2E(κ, t)
]

Note
∫ ∞

0
dκ 2νκ2E(κ, t) = ǫ dissipation

∫ ∞

0
dκ 2νκ2P(κ, t) ≈ 0

∫ ∞

0
dκ 2νκ2T(κ, t) = S vortex stretching

∫ ∞

0
dκ 4ν2κ4E(κ, t) = G enstrophy destruction

Therefore, ǫ̇ = S − G but S, G are new unknowns.
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a basic principle about turbulence

At high Reynolds number, the large scales in a turbulent
flow are independent of viscosity.

The κ−5/3 range ends at the Kolmogorov scale: κ4
d = ǫ/ν3. In the

limit ν → 0, κd → ∞ whilst ǫ is constant.

If ν → 0 and kd → ∞, turbulence creates more small scales, but

the large scales are unchanged.

This property permits finite-dimensional descriptions of turbulence

(models): the large scales and small scales know about each other

only through the dissipation rate ǫ.
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another formulation:

Modeling requires all limits κd → ∞ to be finite.

OR, At high Re, models are independent of κd and ν:

if κd and ν are important, then we must consider the coupled

dynamics of all scales, and modeling is impossible.
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What about the dissipation rate equation?

classic Tennekes-Lumley analysis

* well, G =
∫ κd

0
ν2κ4E(κ)dκ ∼ ν2κ

10/3
d ∼ κ

2/3
d diverges with κd.

* and S =

∫ κd

0
νκ2T(κ)dκ ∼ κ

2/3
d diverges with κd.

* Modeling requires extraordinary cancellation of divergences:

ǫ̇ = S − G ∼ κ0
d 6= 0 (∗)

* S = G in a steady state (Batchelor’s skewness relation),

* but what can justify (∗) in an unsteady problem?

No theory answers this question

(except ‘our theory,’ to be explained.)
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– remark –

κ
2/3
d ∼ ν−1/2 ∼ Re1/2 therefore, in a Kolmogorov steady state S ∼ Re1/2.

– Doering has shown that enstrophy production is at most O(Re3).

– The bound can be realized by a suitable initial condition.

– Steady state: enstrophy production is O
(
1
ν
Re1/2

)
= O(Re3/2).

Steady state turbulence organizes itself so that enstrophy production is much

less than what the Navier-Stokes equations permit.
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basic consequence of the Tennekes-Lumley analysis

A dissipation rate equation cannot be derived from the fluctuation

equations because the nonzero O(Re0) difference S − G is not a

definite moment of the velocity field.

The dissipation rate equation is necessarily

‘phenomenological.’

all well-known in modeling community (Wilcox, Turbulence modeling for CFD)
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Michael Leschziner’s talk summarized the standard RANS approach:
from fluctuation equations

u̇′ + U · ∇u′ + u′ · ∇U + u′ · ∇u′ −
〈
u′ · ∇u′〉 = −∇p′ + ν∇2u′

we can obtain (exact) equations for any correlation of fluctuations.

Such equations contain new unknown correlations (closure problem).

RANS models express unknown in terms of known correlations.

This program fails for the dissipation rate equation, because the basic unknown

is the O(1) difference of two O(Re1/2) correlations.
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continuum mechanics approach

choose descriptors, say k and ǫ;

make closure assumption, say ǫ̇ = f(k, ǫ, P);

postulate simple plausible form, say ǫ̇ =
ǫ

k
[Cǫ1P − Cǫ2ǫ];

find ‘model constants’ Cǫ1 and Cǫ2 from measurements in self-

similar flows (isotropic decay, homogeneous shear...) in which finite di-

mensional modeling is a priori possible.
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underlying heuristic:

Turbulence is a ‘fluid’ with same ‘properties’ in all flows.

many difficulties: what insures model validity away from calibration cases?

model validity in self-similar flows follows from self-similarity, not from the ex-

cellence of the modeling assumptions; too many self-similar cases exist for

calibration by two constants (e.g. different decay laws), leading to ‘constants’

becoming functions, ‘blending functions’ to combine different models,....

In any case,

this ‘continuum mechanics’ paradigm abandons the connection to

the fluctuation equations, one of the arguments for superiority of

two-equation modeling to mixing length models.
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‘our’ viewpoint

A turbulence model should be the demonstrably approximate so-

lution of some ‘equations of motion,’ valid under some explicitly

known conditions.

As ‘equations of motion,’ we suggest two-point closures of Kraich-

nan’s DIA (direct interaction approximation) family: they are based

on general statistical hypotheses and make no assumptions about

– Reynolds number

– kinematics (homogeneity, isotropy)

– Kolmogorov scaling

– self-similarity
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an example

Kraichnan, Direct-interaction approximation for shear and ther-

mally driven turbulence (PF 1964) obtains the eddy diffusivity

κij(x, t) =

∫ t

0
ds

∫

dy G(x,y; t, s)Uij(x, y; t, s)

for passive scalar advection.

G is the scalar response function of the DIA theory, and Uij is the

two-point two-time velocity correlation. DIA provides evolution

equations for both quantities.

This idea has been developed further by Yoshizawa.
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two-scale direct interaction approximation (TSDIA)

–introduce slow space and time scales X = ǫx, T = ǫt

–assume lowest order field is (locally) homogeneous isotropic turbulence

–corrections contain unknown RANS correlations

–expand them in powers of ǫ

–express results using direct interaction approximation (DIA) descriptors of

isotropic turbulence (response and correlation functions)

–find linear and nonlinear viscosity models, transport coefficients in MHD....

Nonlinearity enters through DIA; the comparable expansion by Chini would prob-

ably give linear rapid distortion theory for fluctuation dynamics.
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However, such expressions require solving the DIA equations. We

require something much simpler, closer to a single-point model.

A second anticipated use [of the direct interaction equations] is to suggest

improved qualitative descriptions which could supplement the existing mixing-

length approaches when strong inhomogeneity and anisotropy exist. One way

to do this might be to assume simple forms for the covariance functions, with

a few undetermined parameters, and then use the direct-interaction equations

to fix the values of the parameters.

...Kraichnan (1964).

But how to actually do this?
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current approach

‘Hilbert expansion’ for two-point closure

(S. L. Woodruff and R. Rubinstein, Multiple-scale perturbation analysis of slowly

evolving turbulence, JFM (2006))

We treat the problem as finding approximate solutions of

Ė(κ, t) = P(κ, t) − ∂

∂κ
F[E(κ, t)] − 2νκ2E(κ, t)

where, for the Heisenberg model (provisionally elevated to ‘truth’),

F[E(κ)] = C

∫ κ

0
dµ µ2E(µ, t)

︸ ︷︷ ︸

squared strain at κ

∫ ∞

κ
dp E(p, t)θ(p, t)

︸ ︷︷ ︸

turb. viscosity at κ

This model was chosen for ‘analytical convenience;’ it is a limit

of DIA (Kraichnan). We use θ(p) = 1/
√

p3E(p).
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Consider the steady equation

P(κ) − ∂

∂κ
F[E(κ)] − 2νκ2E(κ) (∗) = 0

where production P(κ) is characterized by total production P = ǫ

and a forcing scale LP : P(κ) = P(κ; ǫ, LP ).

According to Kolmogorov, E(κ) = E(κ; ǫ, L) with L = LP , a two-

parameter family of steady spectra.

‘Inspired’ (or perhaps misled) by kinetic theory, we allow ǫ and L

to be slowly varying functions of time, leading to a normal solution

E(κ, t) = E(κ; ǫ(t), L(t)) (time-dependence only through ǫ and L).

E(κ; ǫ(t), L(t)) satisfies (*), but the unsteady equation contains

error terms ∝ ǫ̇, L̇.

Adding a correction to E(κ; ǫ(t), L(t)) to cancel these error terms

generates a perturbation expansion.
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Introduce the time-dependent perturbation

P(κ, τ) = P0(κ; ǫ(τ), LP (τ)) + δP1(κ, τ) (♯)

with P0 and P1 of order one, τ = δt, and δ a small parameter.

Corresponding to (♯), let

E(κ, t) = E0(κ; ǫ(τ), L(τ)) + δE1(κ, τ) + . . .

Substituting in spectral evolution equation, we get

P0 − ∂F[E0]/∂κ − D0 = 0

To lowest order, E0 adjusts instantaneously to changes produc-

tion. At the next order
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∂

∂κ
L[E1(κ, τ)] = − ∂

∂τ
E0(κ, ǫ(τ), L(τ)) + P1(κ, τ) − D1(κ, τ).

The linear operator L = (δF/δE)|E0
is the energy transfer lin-

earized about E0: compatibility condition(s) to solve for E1 are of

the form
∫ ∞

0
dκ Ψi(κ)

∂

∂τ
E0(κ, ǫ(τ), L(τ)) =

∫ ∞

0
dκ Ψi(κ) [P1(κ, τ) − D1(κ, τ)]

where Ψi are solutions of the homogeneous adjoint equation

L†
[
∂Ψ

∂κ

]

= 0 and L† is the adjoint of L.
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One solution is immediately obvious: Ψ1 = 1. It leads to an energy

balance condition.

There proves to be exactly one more solution,

Ψ2(κ) =

∫ κ

0
dµ

W (µ)

β(µ)
exp

(

−
∫ µ

0
dp W (p)

)

.

(please see paper for details).
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Explicitly evaluating the compatibility equations, we obtain a two-

equation model in the form

ǫ−1/3L2/3I1
i (ǫ, L)

∂ǫ

∂τ
+ (ǫL)2/3I2

i (ǫ, L)
∂L

∂τ
= ǫI3

i (P, LP ) i = 1,2.

where

I1
i (ǫ, L) =

2

3

∫ ∞

0
dp Ψi(p)φ̂(pL),

I2
i (ǫ, L) =

∫ ∞

0
dp Ψi(p)

(
5

3
φ̂(pL) + (κL)φ̂′(pL)

)

,

I3
i (P, LP ) =

∫ ∞

0
dp Ψi(p)p̂1(pL).

This is the required two-equation model. It describes the slow

variation of the spectral parameters ǫ(τ) and L(τ) due to slow

changes of production through P(τ) and LP (τ).
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demonstration of the Tennekes-Lumley balance

– Perturbations E1 satisfy

Ė0(κ, t) = P1(κ, t) − ∂

∂κ
L[E1(κ, t)] − 2νκ2E1(κ, t)

where L is the energy transfer linearized about the steady state.

– If the solution exists, then for scaling,

ǫ̇ǫ−1/3κ−5/3 ∼ ǫ1/3κ−4/3κ2E1

therefore

E1 ∼
[
ǫ̇

ǫ

1

ǫ1/3κ2/3

]

︸ ︷︷ ︸

‘Knudsen number’

ǫ2/3κ−5/3

thus, δE ∼ κ−7/3 (compare Yoshizawa).
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– S = S0 + S1 and G = G0 + G1 where S1, G1 come from E1.

– Since E0 is quasi-static, S0 = G0 : cancellation of leading order

divergence ∼ κ
2/3
d .

– The scaling E1 ∼ κ−7/3 implies S1, G1 ∼ κ0
d .

– Therefore, ǫ̇ = (S0 − G0) + (S1 − G1) = S1 − G1 is (1) nonzero

and (2) finite in limit κd → ∞.
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remarks

The expansion requires that ǫ̇/ǫ and L̇/L be small compared to

ǫ1/3κ2/3 (ratios are ‘Knudsen numbers’). These are the conditions

under which the model is valid.

We would like to know whether the number of parameters in the

‘normal solution’ equals the number of compabitility conditions.

Consider the pair of adjoint equations

∂

∂κ

(
δF
δE

)

E0

[E1] =
∂

∂κ
L[E1] = 0

(
δF
δE

)†

E0

[
∂Ψ

∂κ

]

= L†
E0

[
∂Ψ

∂κ

]

= 0

The first has only one solution (perturb the inertial range flux).

Because L is (1) not self-adjoint and (2) infinite dimensional, there

can be more than one solution of the second.
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row 6= column rank possible in function spaces; difference is the index of L

Example: for the Kovaznay model in which F = η(κ)E(κ) with

η =
√

κ3E, there is only one compatibility condition (index zero); no

two-equation model.

We think that this implies that L and ǫ cannot vary independently

in slow evolution under this model (Steve Woodruff).

two questions

What property of a closure permits a two-equation model?

How strongly does this model depend on the closure?
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kinetic theory analogies

distribution function energy spectrum
equilibrium Maxwellian steady state Kolmogorov spectrum
Boltzmann equation DIA-based closure
Hilbert expansion multiple-scale perturbation theory
Navier-Stokes equations ‘our’ model equations
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difficulties

kinetic theory: Gaussian equilibrium, moments of all orders exist

present: power law, divergence of moments

kinetic theory: self-adjoint linearized collision operator; number of

compatibility equations equals number of conserved moments

present: linearized transfer is not self-adjoint; the number of com-

patibility equations need not equal the number of degrees of free-

dom of the spectrum

kinetic theory: local Maxwellian is a ‘universal’ state

present: an infinite number of self-similar states exists
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some possible generalizations

In self-similar decay, A in E(κ) ∼ Aκ2 for κ ≈ 0 is a constant.

This fixes time-dependence of moments (k ∼ A2/5t−6/5).

More fundamentally, E0(κ, t) = e(Aκ5t2) is a similarity solution of

(any) spectral evolution equation.

What if A = A(τ) is slowly varying in time? (for example, due

to a small production term).
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same story?

A(τ) introduces error terms; adding a correction term E1 generates

a perturbation expansion.

E1 satisfies a linear integral equation determined by the transfer

linearized about E0.

Compatibility condition to solve this equation give equation of

motion for A(τ).
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But can we do something more useful?:

Basic state: a growing self-similar boundary layer described by U∞
and τw.

Derive equations for response of τw to slow changes of U∞?

stress transport model?

It would require a basic seven-parameter state described by ℓ and

(arbitrary) 〈uiuj〉, say

Uij = Uij(ℓ, 〈uu〉)

Given a tractable anisotropic closure, could we derive equations

for slowly varying

Uij(x, t) = Uij(ℓ(x, t), 〈uu〉(x, t))
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limits of models

Homogeneous isotropic turbulence with strong transient effects:

time-dependent forcing (Rubinstein, Clark, Livescu, Luo JoT 2004);

periodically forced turbulence (Bos, Clark, Rubinstein, PoF 2007)

The energy spectrum may not admit description by finitely many

parameters:

–‘unbalanced vortex stretching’ (Speziale and Bernard)

– consequent failure of Tennekes-Lumley balance

– no alternative to complete spectral evolution equation
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CONCLUSIONS

Finite dimensional modeling can be justified in some cases.

Open questions:

–Can we ‘control’ or even predict the number of model equations?

(index of a linear operator)

–How strongly do the models depend on the underlying closure

theory?

–How to treat more meaningful problems? (requires an analytically

tractable inhomogeneous closure theory)

Further research is needed!
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