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Situating our Work

1. Formulate a model in intuitive terms

3

2. Recast the model in mathematical terms

3. Analyze the mathematical structures

4. Apply the framework to relativistic 
electrodynamics

5. Generalize the framework beyond the initial 
{

scope

Here are our contributions.
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The Model in Intuitive Terms (i)
Local Observer versus Extended Observer
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Local observer:
World line
of test particle

space-time

Tetrad
transported
along
world Extended observer:
line

Local space
platform

Extended observer:
Congruence of world lines,
densely filling a sub-domain
of space-time
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The Model in Mathematical Terms
Proposal

• A space-time densely filled with
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world lines is a fiber bundle

• Time translation implies: the fibers
are diffeomorphic to the Lie group
of one-dimensional translations

• An observer’s space is modeled
by the bundle’s base manifoldy

• A time synchronization is modeled
by a section of the bundle

• The splitting into spatial and temporal
pieces is modeled by an Ehresmann connection
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1. Space and time – setting

2. Space and time – splitting

4. Apply the framework to relativistic 
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5. Generalize the framework beyond the initial 
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Space and Time – Setting (i)
Space as Base Manifold

space-time (fibred manifold)
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X

• World lines (fibres) induce an
equivalence relation,

• Equivalence classes are
points in    : relative space of
observer (base manifold)

• Canonical projection

p2

p1 ∼ p2

p j

space

x

p1
π : P → X

x = π(p1)
= π(p2)
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Space and Time – Setting (ii)
Time as Translation Group

space-time
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• Time is modelled as 1D
translation group

• acts freely and
transitively on    :

- group action

orbits are

G

p2 = ρ(g, p1)

ρ : G× P → P

time

e

P

- orbits are
exactly
the fibres

p1
We established structure
of principal fibre bundle

(P, π, X,G)

Space and Time – Setting (iii)
Lie Algebra, Time Scale, Coordinate Time
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êε̂ ê
ε̂

ε̂

time

eg

e e
ê

ê

ε̂
g

0

coordinate
time

t
φ

• Pick dual bases of the Lie algebra

I i t fi ld / 1 f b ti time• Invariant field / 1-form by group action

• fixes a time scale

• fixes a chart (coordinate time):

• In the chart,
is represented by 

ε̂
ε̂ g 7→ φ(g) =

Z g

e

ε̂
(ê, ε̂)

(∂t, dt)
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Space and Time – Setting (iv)
Fundamental Field Map

space-time

14

• For fixed    , the group action
induces a map 

• Doing this throughout
yields the
fundamental
field map

time

e

v̂

v

TeG→ TpP
p

gp ρ0p(e)

ξ : g→ X(P )

Space and Time – Setting (v)
Fundamental Field

Fundamental

15

w = ξ(ê)⊗ ε̂Fundamental
field

Independent of dual 
bases of Lie algebra 
(“time scale”)



w ξ(e)⊗ ε
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Space and Time – Setting (vi)
Time Synchronization as Section

space-time

16

• Time synchronization by
global section (on trivial bundle)

• Section map

s : X → P

spacep

x

Space and Time – Setting (vii)
Fiber Chart and Simultaneity Structure

space-time

17

• Group action plus section equivalent
to fiber chart

• Point in space and
instance in time
associated

ϕ : P → X ×G
p = ρ

¡
g, s(x)

¢

space
to each
event

x
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Space and Time – Splitting (i)
Local Space Platforms as Horizontal Lift
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Local timespace-time

Local space
platform is
assigned to
each event: 
horizontal
subspace

direction:
vertical
subspace

π0
Projection
push      

space

σ
Horizontal

lift      
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Space and Time – Splitting (ii)
Vector Fields and Horizontal Lift
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Vector fields in space-time

Time-dependent vector fields in space

π0 Π :X(P ) → X(X,G)

σ Σ :X(X,G)→ X(P )

induce with
fiber chart

Π ◦ Σ = Id
Σ ◦ Π 6= Id in general

Space and Time – Splitting (iii)
Horizontal Lift Fixes Ehresmann Connection

21

Σ ◦Π = Id−w ⊗ ωΣ ◦Π = Id−w ⊗ ω

ω ∈ F1(P ; g)uniquely defines the connection form

of an Ehresmann connection

ω ◦ Σ = 0
ω(w) = 1

kills horizontal vectors

normalizedω(w) = 1 normalized
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Space and Time – Splitting (iv)
Differential Forms and Horizontal Lift
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Differential forms in space-time

Time-dependent differential
forms in space

ordinary,
twisted

Vector
fields

Differential
forms

F(P )Space-time

Space, Time F(X,G)X(X,G)

Π Π∗Σ Σ∗

Space and Time – Splitting (vi)
Description of Connection in Base Manifold

• Covariant exterior derivative

24

D = Σ∗ ◦ d ◦Π∗
• Group derivative ∂t = Σ

∗ ◦ Lw ◦ Π∗

∂t : Fp(X,G)→ Fp(X,G; g∗)
γ(x t) 7→ ∂ γ(x t)⊗ dt

Lexterior derivative, Lie derivative

γ(x, t) 7→ ∂tγ(x, t)⊗ dt
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Space and Time – Splitting (vi)
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25

D = Σ∗ ◦ d ◦Π∗
• Group derivative

• Curvature 2-form

: connection flat / integrable

• Non-principality 1-form

∂t = Σ
∗ ◦ Lw ◦ Π∗

Ω = Σ∗dω

χ = Σ∗Lwω
Ω = 0

: connection principal

Lexterior derivative, Lie derivative
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Pre-metric Electrodynamics (i)
Maxwell’s Equations in 4D Space-Time
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Electromagnetic field

Electromagnetic excitation

Electric charge-current

Maxwell-Faraday’s law:
Flux conservationdF = 0

dG = J Maxwell-Ampère’s law:
Charge conservation

Pre-metric Electrodynamics (ii)
Connection Fixes Splitting Map

28

S Fp(P ) ∼→ Fp(X G)× Fp−1(X G g∗)S : Fp(P ) −−→ Fp(X,G)× Fp 1(X,G; g∗) :

S = Σ∗ ◦
µ
Id
i(w)

¶
S−1 =

¡
Id e(ω)

¢ ◦ Π∗S =
¡
Id e(ω)

¢ ◦ Π
i(w) e(ω)γ = ω ∧ γcontraction, multiplication
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Pre-metric Electrodynamics (iii)
Formally Define Field Entities in (1+3)D
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SF =

µ
B
˜

¶
∈ F2(X G) ×F1(X G; g∗)SF =

µ
−E

¶
∈ F (X,G) ×F (X,G; g )

SG =

µ
D

H̃

¶
∈ F2×(X,G)×F1×(X,G; g∗)

SJ
µ
ρ
¶

F3 (X G) F2 (X G ∗)SJ =

µ
ρ

−J̃
¶
∈ F3×(X,G)×F2×(X,G; g∗)

Pre-metric Electrodynamics (iv)
Decomposition of Exterior Derivative

30

S ◦ d ◦ S−1 =
µ
D e(Ω)

∂t −D + e(χ)
¶

D ◦D e(Ω) ◦ ∂ 6 0D ◦D = −e(Ω) ◦ ∂t 6= 0
D ◦ ∂t − ∂t ◦D = e(χ) ◦ ∂t 6= 0
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Pre-metric Electrodynamics (v)
Structure of Maxwell’s Equations Emerges
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DẼ ∂ B + e(χ) ẼDE = −∂tB + e(χ)E

DB = e(Ω)Ẽ

DH̃ = J̃+ ∂tD+e(χ)H̃

DD = ρ − e(Ω)H̃

Maxwell-
Faraday

Maxwell-
AmpèreDD = ρ e(Ω)H
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Metric and Constitutive Relations (i)
Definition of Observer

• Consider space-time as Lorentzian manifold1)

33

p

• An extended observer is modeled by a principal 
bundle with Ehresmann connection, such that:

1. The fibers of the bundle coincide with the 
observer’s world lines.

2 Hypothesis of locality The horizontal2. Hypothesis of locality. The horizontal 
subspaces are orthogonal to the fibers.

1) orientable, time-orientable, signature
globally hyperbolic

Metric and Constitutive Relations (ii)
Definition of Observer (cont’d)

• Observer models are equivalent if they define the 

34

q y
same fibration of P

• Equivalent observer models may differ by the 
choice of the group action  along the fibers

• We use the term gauge for the selection of a 
specific fiber chart
• Equivalent to selection of section and group action

• Determines simultaneity structure

• Selects a specific representative of the class of 
equivalent observer models
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Metric and Constitutive Relations (iii)
Observer Metric as Horizontal Metric

• The observer metric is the horizontal metric

35

• Relative space of the observer is turned into a 
family of Riemannian manifolds©

(X, h̄)
ª
∈G

h̄ = −Σ∗h positive definite

• If     is independent of             , the observer is 
called Born rigid.

©
( , )

ª
g∈G

h̄

Metric and Constitutive Relations (iv)
Four Velocity and Lapse Field

space-time

36

• Recall fundamental field

• Consider four velocity    :

e

w = ξ(ê)⊗ ε̂ ξ(ê)
u

g(u,u) = c2
ê

ε̂

time

gLapse field

λ̃ ∈ C∞(P ; g∗)
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Metric and Constitutive Relations (v)
Decomposition of Hodge

• Lorentzian metric     induces Hodge

37

g

• Riemannian metric     induces Hodge

∗̄ :
(

F(X,G)→ F×(X,G)
F(X,G, g∗)→ F×(X,G, g∗)

h̄(
( , , g ) ×( , , g )

Metric and Constitutive Relations (vi)
Constitutive Relations for Empty Space

38

1
r

μ0
G =

1

Z
∗ F

D = ε0 ∗̄λ̃−1Ẽ
B = μ0∗̄λ̃−1H̃

Z =

r
μ0
ε0

4D

(1+3)D
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Normalization (i)
Retrieve Ordinary Differential Forms

• Convert all Lie (co-)algebra valued differential 
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( ) g
forms into ordinary differential forms by

• Example:

λ̃

Ẽ = λ̃E
“tail”     :

Li l b
ε̂

no “tail”:
ordinary
1-form

“tail”     :
Li l b

ε̂
Lie co-algebra
valued scalar

Lie co-algebra
valued 1-form
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Normalization (ii)
Maxwell’s Equations Revisited
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DE = −∂τB +e(δ)E

DB = e(η)E

DH = J+ ∂τD+e(δ)H

DD = ρ − e(η)H

• proper time derivative

• acceleration 1-form

• vorticity 2-form

δ = χ− λ̃−1Dλ̃

∂τ = λ̃−1∂t

η = λ̃Ω

kinematic
quantities,
up to
factor c2
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Rotating Platform (i)
What is a Stationary Problem?

• Stationary problem

43

Stationary problem
• Fibers admit Killing field

• Charge current symmetric, 

• Then (“time independent”),           : ∂τ = 0

dE = e(δ)E electro-( )

dD = ρ− e(η)H
dB = e(η)E

dH = J+e(δ)H

static

magneto-
static

coupled via
vorticity

Rotating Platform (iii)
Definition of Schiff’s Paradox

45

capacitor rotates,
observer at rest

Schiff 1939: A question in 
general relativity. Proc. Nat. 
Acad. Sci. USA 25, 391-395
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Rotating Platform (iii)
Definition of Schiff’s Paradox
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despite charges are
rotating relative

to me???

capacitor at rest,
observer rotates

Schiff 1939: A question in 
general relativity. Proc. Nat. 
Acad. Sci. USA 25, 391-395

Rotating Platform (iv)
Resolution of Schiff’s Paradox

• Stationary problem

47

y p

• Consider first order in

• Maxwell’s equations have
standard form, except

• Solution in spherical coordinates

div ~B = 2
c2
~ω · ~E

• Solution in spherical coordinates
: by Coulomb integral,

paradox resolved

for             :
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Rotating Platform (v)
Schiff’s Treatment: Fields not Observable

48

Our treatment:
Orthogonal
curved connection

Schiff’s treatment:
Non-orthogonal
flat connection

Situating our Work

1. Formulate a model in intuitive terms
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2. Recast the model in mathematical terms

3. Analyze the mathematical structures

4. Apply the framework to relativistic 
electrodynamics

1. pre-metric electrodynamics

2 metric and constitutive relations2. metric and constitutive relations

3. normalization

4. Schiff paradox

5. Generalize the framework beyond the initial 
scope
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Beyond the Initial Scope (i)
Extension of the Pre-Metric Framework

• The pre-metric framework can be extended with 

50

p
minimal adjustments to allow for:

• Bundle- and base manifolds of arbitrary dimensions.

• Arbitrary Lie groups (including non-Abelian Lie groups).

• Splitting maps, decomposition of operators, and 
gauge transformations all remain operational.

A t i t t i tti t b• Any extension to  a metric setting appears to be 
specific to an application. 

Beyond the Initial Scope (ii)
What about a Frame-Field Approach?

1. Formulate a model in intuitive terms 

51

• Idem.

2. Recast the model in mathematical terms
• Introduce observers as sections of the orthonormal frame 

bundle with an adapted coordinate system for the fibration.

3. Analyze the mathematical structures
• Tensor calculus, anholonomic frames, Levi-Civita

connections.

4. Apply the emerging framework
• Frame-based splitting and decomposition of operators.

5. Generalize the framework beyond the initial scope
• General frame-bundles.
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Summary
What are the Takeaways?

• We model relativistic observers by principal 
bundles and Ehresmann connections

52

bundles and Ehresmann connections.

• We define a concise set of mathematical  
structures to discuss observers in an entirely 
frame- and coordinate-free way.

• The presented framework subsumes, characterizes, 
and extends various observer models.

• The framework enables discussing anholonomic
observers without conceptual or technical difficulty.

• The generalization to arbitrary principal bundles 
contributes to mathematical physics.

53
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Addendum (i)
Remarks about Poynting Form

• Note that is not defined

56

Ẽ ∧ H̃
• Energy-momentum tensor

• Splitting yields

T : X(P )→ F3×(P ) :
n 7→ 1

2

¡
i(n)F ∧G− i(n)G ∧ F¢

Splitting yields

• Poynting form

S̃ : C∞(P, g)→ F2×(P ; g∗) :
υ 7→ 1

2

¡
(υẼ) ∧ H̃− (υH̃) ∧ Ẽ¢

S = λ−1S̃(λ−1)

Addendum (ii)
Relation to Object of Anholonomity

• Exterior derivative in terms of (co-)frame

57

(εα, eα)( )

• Pick adapted coordinates

dγ = εα ∧ Leαγ − dεα ∧ i(eα)γ
( , α)

dεα = 1
2
Cβγ

αεβ ∧ εγ
object of anholonomity

proper time along world line from sync event

labels world lines

x0

xa

Γa = h(∂xa, ∂x0)
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Addendum (iii)
Relation to Object of Anholonomity (cont’d)

• Establish time-orthogonal (co-)frame

58

g ( )

e0 = ∂x0

ea = ∂xa − Γa∂x0
ε0 = dx0 + Γadx

a

εa = dxa

h(e0, e0) = 1, h(ea, e0) = 0

Cβγ
a = 0

cC0c
0 = δc

Cbc
0 = ηbc

• Kinematic quantities by
splitting object of anholonomity

• Anholonomic frame formalism
yields identical form of Maxwell’s
equations, cf. H&O eq. (B.4.31)


