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Motivation

Simulation of production processes in production lines and networks

Main assumption: Reasonable to assume a continuous flow of products
Examples for mass volume production facilities are semi-conductor
industries and Coca-Cola bottles
References will be given later
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Basic modeling assumptions

Single product flow (extension see below)

Machines have a processing velocity v > 0 and a processing capacity
µ > 0

Dynamics: Parts arrive and are processed according to the capacity

Typically modeled by discrete event simulations (rigorous derivation
of continuous model from DES possible)
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Simplest conservation law

Single product flow

Production line described by x ∈ R
Product density in machine x descirbed by ρ(x , t)

Evolution: Free transport with velocity v(x) up to the maximal
capacity µ(x)

. . . implies
∂tρ + ∂x min{µ(x), v(x)ρ} = 0

Problem: Equation gives rise to δ-distributions as soon as vρ exceeds
µ

Problem: Extension to network structures?
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Extension to networks

Assumption of finite size machines implies µ(x) =
∑

i = 1NµiχIi

with capacities µi ∈ R
Think of the production line as a network of machines with constant
capacities. This implies a simple transport equation for each machine
and suitable coupling conditions taking care of the possibly different
capacities

ρi is the product density in machine i :

∂tρi + ∂xvρi = 0

Coupling?
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Coupling through buffering queues

There is a buffering queue between two machines - the time evolution
of the number of parts in the queue in front machine i is recorded by
qi (t)

Dynamics of the system + boundary conditions at x = 0 and
fi = min{µi , vρi}

∂tqi = fi−1 − fi , ∂tρi + ∂xvρi = 0

Consider a discretization of ∂tρ + ∂x min{µ, vρ} = 0 with µ discontinuous at
x = 0
Let ρ(x , 0) = ρ0(t) be the discretized density and write a Godunov
discretization of the pde

∂t(∆xρ0) = f −
1
2 − f

1
2

Problem: Only if vρ−1 > µ(0+) we have the possibility of a δ-distribution

Hence, at x = 0 we define q = ∆xρ0 and since µ is constant for x <> 0 we

can use the Upwind discretization
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Analytical results for the coupled network model

Equations:
∂tqi = fi−1 − fi , ∂tρi + ∂xvρi = 0

Boundary conditions:

fi = min{µi , vρi}, vρi (0, t) = fi

Existence results
For initial data with suitable small BV–norm ρ0

i and networks without
closed loops there exists a weak solution to the coupled system of
transport equations and ordinary differential equations such that
ρi ∈ C 0,1(0,T , L1(0, 1)) and qi ∈W 1,1(0,T ).
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Production line with three different capacities
µ0 > µ1 > µ2. Evolution of the buffers.
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Production line with three different capacities
µ0 > µ1 > µ2. Evolution of the production densities.
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Simulation of the original model with discontinuous µ(x)
in the same setting. Oberseve the numerical δ peaks at the
transition from µ0 to µ1 and to µ2.
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Multiple policies through kinetic models

Consider a product flow with two different products (blue, red)

Each machine can process both products

Each machine assigns production capacity (up to the maximal
capacity) according to the priority of the products

Example. Red more important than blue and capacities are decreasing
along the line µi = 5− i
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Kinetic model for flow of products with priorities (due to
A-D-R)

f (t, x , y) products at time t and position x and priority y (lower value of y
corresponds to a higher priority)

Model: Products with higher priority move faster through the supply chain

Products with priority less or equal than y are moved with maximal velocity.
The number of products with priority less than y is

∫ y

−∞ f (t, x , y ′)dy ′

and the flux is

β =
∫ y

−∞ f (t, x , y ′)v(x , y ′)dy ′

We have a maximal production capacity of µ. If the flux is larger than µ,
then the actual processing velocity is zero, below it is v(x , y ′)f (t, x , y ′) .
Hence the actual velocity is

v(x , y)H

(
µ(x)−

∫ y

−∞
f (t, x , y ′)v(x , y ′)dy ′

)
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Kinetic model for a production line with priorities

Kinetic model as introduced by Armbruster-Degond-Ringhofer

∂t f + ∂x (H(µ(x)− β(x , y , t)) v(x , y)f (x , y , t) = 0

Moment equations of the type ∂tmj + ∂xFj = 0 are obtained for
mj =

∫
y j fdy and the system is closed (formally by)

f e =
K∑

k=1

ρkδ(y − Yk)

for a finite set of priorities Yk with densities ρk

Moment equations allow for δ−distributions as solutions!

Extension to networks possible?
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Example for macroscopic equations in case of two priorities

∂tρk + ∂xqk = 0, ∂tρkYk + ∂xqkYk = 0

The flux qk is defined as follows

If µ < ρ1v1, then q1 = mu and q2 = 0

If ρ1v1 < µ < ρ1v1 + ρ2v2, then q1 = vρ1 and q2 = µ− q1

If ρ1v1 + ρ2v2 ≤ µ, then qk = ρkv

In the case of a single product we recover the previous dynamics

(2008) 15 / 29



Network formulation

Introduce finite size machines to obtain a network formulation by
setting

µ(x) =
∑

µiχIi

Leads to kinetic model for the density of parts fi on arc i

∂t fi + ∂x (H(µi − β) vi fi = 0

Suitable coupling conditions? Introduce buffering queue depending on
the priority and buffering exceeding demands and supplies:

∂tQi (y , t) = Φi−1 − Φi

where Φ is the flux Φ = H (µi − β(y , t)) vi fi and β =
∫ y
−∞ v ′fdv ′
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Suitable inflow boundary conditions

∂tQi (y , t) = Φi−1 − Φi , Φ = H (µi − β(y , t)) vi fi

Condition is not sufficient to determine inflow boundary condition for
f i . it is necessary to prescribe treatment of products at the vertex.

As in the dynamics of the PDE the products have different priority
and are passed through the vertex according to their priority

Since the connected processor might have less capacity than the
connected processor we need to introduce a pointer variable Y to
indicate the priority still being processed
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Example with previous model and network model using a
pointer variable
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Suitable inflow boundary conditions - part II

∂tQi (y , t) = Φi−1 − Φi , Φ = H (µi − β(y , t)) vi fi

Equation for the pointer: Assume at time tn the pointer is such that all
incoming parts are being processed. At time tn+1 two cases have to
distinguished.

The inflow Φe−1(y , tn+1) parts with priority y < Y exceeed the
maximal capacity
=⇒ need to decrease the pointer – Y determined by∫ Y (tn+1)

−∞
Φe−1(y , tn)dy = µe

The inflow Φe−1(y , tn+1) parts with priority y < Y does not exceeed
the maximal capacity
=⇒ need to increase the pointer such that more parts with lower
priority are processed. The remaining capacity of

µe −
∫ Y (tn)

−∞ Φe−1(y , tn)dy = µe ( maximal capacity - processed parts)
will be used such that lower priority parts are processed:

∫ Y (tn+1)

Y (tn)

(∆tΦe−1(y , tn+1)+Q(tn,y)dy = (µe−
∫ Y (tn)

−∞
Φe−1(y , tn)dy)∆t
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Suitable inflow boundary conditions - part III

∂tQi (y , t) = Φi−1 − Φi , Φ = H (µi − β(y , t)) vi fi

Pointer dynamics for Y (tn)

higher priority parts arrive:
∫ Y (tn+1)

−∞ Φe−1(y , tn)dy = µe

lower priority parts arrive:
∫ Y (tn+1)

Y (tn)
(∆tΦe−1(y , tn+1) + Q(tn,y)dy =

(µe −
∫ Y (tn)

−∞ Φe−1(y , tn)dy)∆t

Dynamics in the limit ∆t → 0 :

if ∂tY < 0 :

∫ Y (t)

−∞
Φe−1(y , t)dy = µe

if ∂tY > 0 : Q(t,Y )∂tY = (µe −
∫ Y (t)

−∞
Φe−1(y , t)dy)∆t

In both cases the total outflow of the buffer is
Φe(y , t) = Φe−1(y , t)H(Y − y) +

(
µ−

∫ Y

−∞Φe−1(y , t)dy
)

δ(Y − y)
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Remarks and further steps

Dynamics of a kinetic model for products with priority consists of a
transport equation for the parts with transport according to the
priority combined with buffering queues and a suitable pointer
dynamics

∂t f
e + ∂x (H(µ− β)vf e) = 0

Pointer dynamics can be understood as (proof available)

Y = min{min{Y : Q(Y , t) 6= 0},Y :

∫ Y

−∞
Φe−1(y , t)dy = µe}

Obviously: Kinetic dynamic to complex for reasonable studies →
moment equations for the coupled model

me
j =

∫
y j f edy , F e

j y j(H(µe − βe)vf edy

Apply equilibrium closure f e =
∑K

k=1 ρeδ(y − Yk)
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Moment equations

Macroscopic equations:

∂tρ
e
k + ∂xq

e
k = 0, ∂tq

e
k + ∂xq

e
kY e

k = 0

Equilibrium closure relations imply that the pointer only attains values
in the finite set

Y ∈ {Y1, . . . ,YK ,+∞}

Integration of the kinetic coupling condition gives macroscopic
coupling conditions. We give some examples.

Y = +∞ : Yk(xe , t) = Yk(xe−1, t) and qe
k = qe−1

k (all products pass)

Y = Yκ : Yk(xe , t) = Yk(xe−1, t) and qe
k = qe−1

k for k ≤ κ− 1 and

qκ = µe −
∑κ−1

k=1 qe−1
k (only products with priority less than κ pass)
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Moment equations – Queue

Macroscopic equations:

∂tρ
e
k + ∂xq

e
k = 0, ∂tq

e
k + ∂xq

e
kY e

k = 0

Integration of the equation for the queue and closure yields a moment
equations for queues in terms of the moments Yk

∂tπ
e
k = qe−1

k − qe
k

Summary:

∂tρ
e
k + ∂xq

e
k = 0, ∂tq

e
k + ∂xq

e
kY

e
k = 0

∂tπ
e
k = qe−1

k − qe
k

Y = Yκ : Yk(x
e , t) = Yk(x

e−1, t)

qe
k = qe−1

k , k ≤ κ− 1, qκ = µe −
κ−1∑
k=1

qe−1
k

κ = min{min{k : πk 6= 0}, k :
k−1∑

qe−1
k ≤ µe ≤

k∑
qe−1

k }
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Final remarks

In the case K = 1 we obtain the simple model for single product flow
as before

In the case K = 2 we obtain the following dynamics for the pointer
and the queues

qe
1 = qe−1

1 + δ(Y1 − Y )(µe − qe−1
1 ),

qe
2 = qe−1

2 − δ(Y1 − Y )(qe−1
2 ) + δ(Y2 − Y )(µe − qe−1

1 − qe−1
2 )

Y :ek= Y e−1
k

Y =
Y1 if πe

1 6= 0, qe−1
1 > µe

Y2 if πe
1 = 0, πe

2 6= 0, qe−1
1 + qe−1

2 > µe > qe−1
1

+∞ if πe
1 = 0 = πe

2 , q
e−1
1 + qe−1

2 < µe
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Single processor with dynamic priorities. Mass fluxes q1

and q2 shown – production of q2 stopped due to higher
priority of parts 1.
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Two processors connected by queues. Time evolution of
queues and pointer variable (2). Parts with subindex one
have higher priority. For t < 1 and t > 8 all parts are
processed and inbetween only priority one parts.
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Two processors connected by queues. Attribute dependent
velocity. Time evolution of queues and pointer variable
(2). Parts with subindex one have higher priority and
higher processing velocity For t < 1 and t > 6 (compared
with t > 8 in the previous example) all parts are processed
and inbetween only priority one parts.
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Thank you for your attention.
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