Kinetic models for supply chains

Michael Herty
(joint work with P. Degond, S. Göttlich and A. Klar)

RWTH

Workshop on Kinetic Models

Contents

Motivation

Simulation of production processes in production lines and networks

Main assumption: Reasonable to assume a continuous flow of products Examples for mass volume production facilities are semi-conductor industries and Coca-Cola bottles
References will be given later

Basic modeling assumptions

- Single product flow (extension see below)
- Machines have a processing velocity $v>0$ and a processing capacity $\mu>0$
- Dynamics: Parts arrive and are processed according to the capacity
- Typically modeled by discrete event simulations (rigorous derivation of continuous model from DES possible)

Simplest conservation law

- Single product flow
- Production line described by $x \in \mathcal{R}$
- Product density in machine x descirbed by $\rho(x, t)$
- Evolution: Free transport with velocity $v(x)$ up to the maximal capacity $\mu(x)$
... implies

$$
\partial_{t} \rho+\partial_{x} \min \{\mu(x), v(x) \rho\}=0
$$

- Problem: Equation gives rise to δ-distributions as soon as $v \rho$ exceeds μ
- Problem: Extension to network structures?

Extension to networks

- Assumption of finite size machines implies $\mu(x)=\sum i=1^{N} \mu_{i} \chi_{I_{i}}$ with capacities $\mu_{i} \in \mathcal{R}$
- Think of the production line as a network of machines with constant capacities. This implies a simple transport equation for each machine and suitable coupling conditions taking care of the possibly different capacities
- ρ_{i} is the product density in machine i :

$$
\partial_{t} \rho_{i}+\partial_{x} v \rho_{i}=0
$$

- Coupling?

Coupling through buffering queues

- There is a buffering queue between two machines - the time evolution of the number of parts in the queue in front machine i is recorded by $q_{i}(t)$
- Dynamics of the system + boundary conditions at $x=0$ and $f_{i}=\min \left\{\mu_{i}, v \rho_{i}\right\}$

$$
\partial_{t} q_{i}=f_{i-1}-f_{i}, \quad \partial_{t} \rho_{i}+\partial_{x} v \rho_{i}=0
$$

- Consider a discretization of $\partial_{t} \rho+\partial_{x} \min \{\mu, v \rho\}=0$ with μ discontinuous at $x=0$
Let $\rho(x, 0)=\rho_{0}(t)$ be the discretized density and write a Godunov discretization of the pde

$$
\partial_{t}\left(\Delta x \rho_{0}\right)=f^{-\frac{1}{2}}-f^{\frac{1}{2}}
$$

Problem: Only if $v \rho_{-1}>\mu(0+)$ we have the possibility of a δ-distribution Hence, at $x=0$ we define $q=\Delta x \rho_{0}$ and since μ is constant for $x<>0$ we can use the Upwind discretization

Analytical results for the coupled network model

- Equations:

$$
\partial_{t} q_{i}=f_{i-1}-f_{i}, \quad \partial_{t} \rho_{i}+\partial_{x} v \rho_{i}=0
$$

- Boundary conditions:

$$
f_{i}=\min \left\{\mu_{i}, v \rho_{i}\right\}, \quad v \rho_{i}(0, t)=f_{i}
$$

- Existence results

For initial data with suitable small BV -norm ρ_{i}^{0} and networks without closed loops there exists a weak solution to the coupled system of transport equations and ordinary differential equations such that $\rho_{i} \in C^{0,1}\left(0, T, L^{1}(0,1)\right)$ and $q_{i} \in W^{1,1}(0, T)$.

Production line with three different capacities

 $\mu_{0}>\mu_{1}>\mu_{2}$. Evolution of the buffers.

Production line with three different capacities

 $\mu_{0}>\mu_{1}>\mu_{2}$. Evolution of the production densities.

Simulation of the original model with discontinuous $\mu(x)$ in the same setting. Oberseve the numerical δ peaks at the transition from μ_{0} to μ_{1} and to μ_{2}.

Multiple policies through kinetic models

- Consider a product flow with two different products (blue, red)
- Each machine can process both products
- Each machine assigns production capacity (up to the maximal capacity) according to the priority of the products
- Example. Red more important than blue and capacities are decreasing along the line $\mu_{i}=5-i$

Kinetic model for flow of products with priorities (due to A-D-R)

- $f(t, x, y)$ products at time t and position x and priority y (lower value of y corresponds to a higher priority)
- Model: Products with higher priority move faster through the supply chain
- Products with priority less or equal than y are moved with maximal velocity. The number of products with priority less than y is $\int_{-\infty}^{y} f\left(t, x, y^{\prime}\right) d y^{\prime}$ and the flux is

$$
\beta=\int_{-\infty}^{y} f\left(t, x, y^{\prime}\right) v\left(x, y^{\prime}\right) d y^{\prime}
$$

- We have a maximal production capacity of μ. If the flux is larger than μ, then the actual processing velocity is zero, below it is $v\left(x, y^{\prime}\right) f\left(t, x, y^{\prime}\right)$. Hence the actual velocity is

$$
v(x, y) H\left(\mu(x)-\int_{-\infty}^{y} f\left(t, x, y^{\prime}\right) v\left(x, y^{\prime}\right) d y^{\prime}\right)
$$

Kinetic model for a production line with priorities

- Kinetic model as introduced by Armbruster-Degond-Ringhofer

$$
\partial_{t} f+\partial_{x}(H(\mu(x)-\beta(x, y, t)) v(x, y) f(x, y, t)=0
$$

- Moment equations of the type $\partial_{t} m_{j}+\partial_{x} F_{j}=0$ are obtained for $m_{j}=\int y^{j} f d y$ and the system is closed (formally by)

$$
f^{e}=\sum_{k=1}^{K} \rho_{k} \delta\left(y-Y_{k}\right)
$$

for a finite set of priorities Y_{k} with densities ρ_{k}

- Moment equations allow for δ-distributions as solutions!
- Extension to networks possible?

Example for macroscopic equations in case of two priorities

$$
\partial_{t} \rho_{k}+\partial_{x} q_{k}=0, \quad \partial_{t} \rho_{k} Y_{k}+\partial_{x} q_{k} Y_{k}=0
$$

The flux q_{k} is defined as follows

- If $\mu<\rho_{1} v_{1}$, then $q_{1}=m u$ and $q_{2}=0$
- If $\rho_{1} v_{1}<\mu<\rho_{1} v_{1}+\rho_{2} v_{2}$, then $q_{1}=v \rho_{1}$ and $q_{2}=\mu-q_{1}$
- If $\rho_{1} v_{1}+\rho_{2} v_{2} \leq \mu$, then $q_{k}=\rho_{k} v$

In the case of a single product we recover the previous dynamics

Network formulation

- Introduce finite size machines to obtain a network formulation by setting

$$
\mu(x)=\sum \mu_{i} \chi I_{i}
$$

- Leads to kinetic model for the density of parts f_{i} on arc i

$$
\partial_{t} f_{i}+\partial_{x}\left(H\left(\mu_{i}-\beta\right) v_{i} f_{i}=0\right.
$$

- Suitable coupling conditions? Introduce buffering queue depending on the priority and buffering exceeding demands and supplies:

$$
\partial_{t} Q_{i}(y, t)=\Phi_{i-1}-\Phi_{i}
$$

where Φ is the flux $\Phi=H\left(\mu_{i}-\beta(y, t)\right) v_{i} f_{i}$ and $\beta=\int_{-\infty}^{y} v^{\prime} f d v^{\prime}$

Suitable inflow boundary conditions

$$
\partial_{t} Q_{i}(y, t)=\Phi_{i-1}-\Phi_{i}, \quad \Phi=H\left(\mu_{i}-\beta(y, t)\right) v_{i} f_{i}
$$

- Condition is not sufficient to determine inflow boundary condition for f^{i}. it is necessary to prescribe treatment of products at the vertex.
- As in the dynamics of the PDE the products have different priority and are passed through the vertex according to their priority
- Since the connected processor might have less capacity than the connected processor we need to introduce a pointer variable Y to indicate the priority still being processed

Example with previous model and network model using a pointer variable

Suitable inflow boundary conditions - part II

$$
\partial_{t} Q_{i}(y, t)=\Phi_{i-1}-\Phi_{i}, \quad \Phi=H\left(\mu_{i}-\beta(y, t)\right) v_{i} f_{i}
$$

- Equation for the pointer: Assume at time t_{n} the pointer is such that all incoming parts are being processed. At time t_{n+1} two cases have to distinguished.
- The inflow $\Phi^{e-1}\left(y, t_{n+1}\right)$ parts with priority $y<Y$ exceeed the maximal capacity
\Longrightarrow need to decrease the pointer $-Y$ determined by

$$
\int_{-\infty}^{Y\left(t_{n+1}\right)} \Phi^{e-1}\left(y, t_{n}\right) d y=\mu^{e}
$$

- The inflow $\Phi^{e-1}\left(y, t_{n+1}\right)$ parts with priority $y<Y$ does not exceeed the maximal capacity
\Longrightarrow need to increase the pointer such that more parts with lower priority are processed. The remaining capacity of $\mu^{e}-\int_{-\infty}^{Y\left(t_{n}\right)} \Phi^{e-1}\left(y, t_{n}\right) d y=\mu^{e}$ (maximal capacity - processed parts) will be used such that lower priority parts are processed:

Suitable inflow boundary conditions - part III

$$
\partial_{t} Q_{i}(y, t)=\Phi_{i-1}-\Phi_{i}, \quad \Phi=H\left(\mu_{i}-\beta(y, t)\right) v_{i} f_{i}
$$

- Pointer dynamics for $Y\left(t_{n}\right)$
higher priority parts arrive: $\int_{-\infty}^{Y\left(t_{n+1}\right)} \Phi^{e-1}\left(y, t_{n}\right) d y=\mu^{e}$
lower priority parts arrive: $\int_{Y\left(t_{n}\right)}^{Y\left(t_{n+1}\right)}\left(\Delta t \Phi^{e-1}\left(y, t_{n+1}\right)+Q\left(t_{n, y)} d y=\right.\right.$ $\left(\mu^{e}-\int_{-\infty}^{Y\left(t_{n}\right)} \Phi^{e-1}\left(y, t_{n}\right) d y\right) \Delta t$
- Dynamics in the limit $\Delta t \rightarrow 0$:

$$
\begin{gathered}
\text { if } \partial_{t} Y<0: \quad \int_{-\infty}^{Y(t)} \phi^{e-1}(y, t) d y=\mu^{e} \\
\text { if } \partial_{t} Y>0: \quad Q(t, Y) \partial_{t} Y=\left(\mu^{e}-\int_{-\infty}^{Y(t)} \Phi^{e-1}(y, t) d y\right) \Delta t
\end{gathered}
$$

- In both cases the total outflow of the buffer is
$\Phi^{e}(y, t)=\Phi^{e-1}(y, t) H(Y-y)+\left(\mu-\int_{-\infty}^{Y} \Phi^{e-1}(y, t) d y\right) \delta(Y-y)$

Remarks and further steps

- Dynamics of a kinetic model for products with priority consists of a transport equation for the parts with transport according to the priority combined with buffering queues and a suitable pointer dynamics

$$
\partial_{t} f^{e}+\partial_{x}\left(H(\mu-\beta) v f^{e}\right)=0
$$

- Pointer dynamics can be understood as (proof available)

$$
Y=\min \left\{\min \{Y: Q(Y, t) \neq 0\}, Y: \int_{-\infty}^{Y} \Phi^{e-1}(y, t) d y=\mu^{e}\right\}
$$

- Obviously: Kinetic dynamic to complex for reasonable studies \rightarrow moment equations for the coupled model

$$
m_{j}^{e}=\int y^{j} f^{e} d y, \quad F_{j}^{e} y^{j}\left(H\left(\mu^{e}-\beta^{e}\right) v f^{e} d y\right.
$$

- Apply equilibrium closure $f^{e}=\sum_{k=1}^{K} \rho^{e} \delta\left(y-Y_{k}\right)$

Moment equations

Macroscopic equations:

$$
\partial_{t} \rho_{k}^{e}+\partial_{x} q_{k}^{e}=0, \quad \partial_{t} q_{k}^{e}+\partial_{x} q_{k}^{e} Y_{k}^{e}=0
$$

- Equilibrium closure relations imply that the pointer only attains values in the finite set

$$
Y \in\left\{Y_{1}, \ldots, Y_{K},+\infty\right\}
$$

- Integration of the kinetic coupling condition gives macroscopic coupling conditions. We give some examples.
- $Y=+\infty: Y_{k}\left(x^{e}, t\right)=Y_{k}\left(x^{e-1}, t\right)$ and $q_{k}^{e}=q_{k}^{e-1}$ (all products pass)
- $Y=Y_{\kappa}: Y_{k}\left(x^{e}, t\right)=Y_{k}\left(x^{e-1}, t\right)$ and $q_{k}^{e}=q_{k}^{e-1}$ for $k \leq \kappa-1$ and $q_{\kappa}=\mu^{e}-\sum_{k=1}^{\kappa-1} q_{k}^{e-1}$ (only products with priority less than κ pass)

Moment equations - Queue

Macroscopic equations:

$$
\partial_{t} \rho_{k}^{e}+\partial_{x} q_{k}^{e}=0, \quad \partial_{t} q_{k}^{e}+\partial_{x} q_{k}^{e} Y_{k}^{e}=0
$$

- Integration of the equation for the queue and closure yields a moment equations for queues in terms of the moments Y_{k}

$$
\partial_{t} \pi_{k}^{e}=q_{k}^{e-1}-q_{k}^{e}
$$

- Summary:

$$
\begin{array}{r}
\partial_{t} \rho_{k}^{e}+\partial_{x} q_{k}^{e}=0, \quad \begin{array}{r}
\partial_{t} q_{k}^{e}+\partial_{x} q_{k}^{e} Y_{k}^{e}=0 \\
\partial_{t} \pi_{k}^{e}=q_{k}^{e-1}-q_{k}^{e} \\
Y=Y_{\kappa}: Y_{k}\left(x^{e}, t\right)=Y_{k}\left(x^{e-1}, t\right) \\
q_{k}^{e}=q_{k}^{e-1}, k \leq \kappa-1, \quad q_{\kappa}=\mu^{e}-\sum_{k=1}^{\kappa-1} q_{k}^{e-1} \\
\kappa=\min \left\{\min \left\{k: \pi_{k} \neq 0\right\}, \quad k: \sum^{k-1} q_{k}^{e-1} \leq \mu^{e} \leq \sum^{k} q_{k}^{e-1}\right\}
\end{array}
\end{array}
$$

Final remarks

- In the case $K=1$ we obtain the simple model for single product flow as before
- In the case $K=2$ we obtain the following dynamics for the pointer and the queues

$$
\begin{array}{r}
q_{1}^{e}=q_{1}^{e-1}+\delta\left(Y_{1}-Y\right)\left(\mu^{e}-q_{1}^{e-1}\right), \\
q_{2}^{e}=q_{2}^{e-1}-\delta\left(Y_{1}-Y\right)\left(q_{2}^{e-1}\right)+\delta\left(Y_{2}-Y\right)\left(\mu^{e}-q_{1}^{e-1}-q_{2}^{e-1}\right) \\
Y:{ }_{k}^{e}=Y_{k}^{e-1} \\
Y_{1} \text { if } \pi_{1}^{e} \neq 0, q_{1}^{e-1}>\mu^{e} \\
Y=Y_{2} \text { if } \pi_{1}^{e}=0, \pi_{2}^{e} \neq 0, q_{1}^{e-1}+q_{2}^{e-1}>\mu^{e}>q_{1}^{e-1} \\
+\infty \text { if } \pi_{1}^{e}=0=\pi_{2}^{e}, q_{1}^{e-1}+q_{2}^{e-1}<\mu^{e}
\end{array}
$$

Single processor with dynamic priorities. Mass fluxes q_{1} and q_{2} shown - production of q_{2} stopped due to higher priority of parts 1 .

Two processors connected by queues. Time evolution of queues and pointer variable (2). Parts with subindex one have higher priority. For $t<1$ and $t>8$ all parts are processed and inbetween only priority one parts.

Fig. 4.6. Amount of parts in the queues for processor 1 (left) and 2 (right).

Two processors connected by queues. Attribute dependent velocity. Time evolution of queues and pointer variable (2). Parts with subindex one have higher priority and higher processing velocity For $t<1$ and $t>6$ (compared with $t>8$ in the previous example) all parts are processed and inbetween only priority one parts.

Thank you for your attention.

References

- Derivation of continuous model from discrete event simulations: Armbruster, Ringhofer, Degond, SIAP 2006
- Extension to network model: Göttlich, Herty, Klar, CMS 2007
- Analysis of the coupled PDE-ODE model: Herty, Klar, Piccoli, SIMA 2007
- Model for different properties: Armbruster, Degond, Ringhofer, SIAP 2007

