

Cellular Automata Models of Pedestrian Dynamics

Andreas Schadschneider Institute for Theoretical Physics University of Cologne Germany

www.thp.uni-koeln.de/~as

www.thp.uni-koeln.de/ant-traffic

Overview

Pedestrian dynamics

- interesting collective effects
- simple model ?
- learning from nature?
- similarities with ant trails

unified description of pedestrian dynamics and ant trails!

Ant trails vs. human trails

ant trail

human trail

Pedestrian Dynamics

More complex than highway traffic

- motion is 2-dimensional
- counterflow important
- interaction "longer-ranged" (not just nearestneighbour interactions)

Interesting collective phenomena!

jamming or clogging (e.g. at exits)

no real challenge for modelling!

Lane Formation in Counterflow

Pedestrian motion

Oscillations of Flow Direction

Empirical Results

- not many quantitative results available
- contradicting results (quantitave, sometimes even qualitative)
- experiments not well documented
- important for calibration of models

Experiments with up to 250 soldiers (in collaboration with FZ Jülich, University of Wuppertal)

Fundamental diagram

Non-negligible differences In particular for ρ_0

SFPE	P. J. DiNenno (2002) SFPE Handbook
PM	V. M. Predtechenskii and Milinskii (1978)
WM	U. Weidmann (1993) Transporttechnik

Comparison of experimental data

Causes discussed in the literature

- Uni- and bidirectional
- Way of measurement
- Fluctuations
- Culture and population demographics
- Psychological factors

Unfortunately most authors give not all necessary information!

Flow vs. Density

Preliminary results

Fundamental diagram

- single file movement
- corridor width

b = 0.7m

- unidirectional
- closed boundaries
- stationary states
- Number of pedestrians

N = 17 - 70

Bottleneck

Sets of the experiments: Part 2

Bottleneck flow

Bottleneck width b 0.8, 0.9, ..., 2.5m
Bottleneck length I 0.1, 2.0, 4.0m
Corridor width b_c 4.0, 5.0, 6.0m
Number of pedestrians N 50, 100, ..., 250
Distance to the entrance d 1.0, 2.0, 3.0, 4.0m

Examples

Calculated egress times (flow rates) of different evacuation simulation tools (Aseri, PedGO, Simulex and BuildingExodus) will differ significantly (factor 2 to 4) (C. Rogsch, PED2005)

In particular for simple geometries

Chemotaxis

Ants can communicate on a chemical basis:

chemotaxis

Ants create a chemical trace of pheromones

trace can be "smelled" by other ants follow trace to food source etc.

Ant trail model

1. motion of ants

Dynamics:

2. pheromone update (creation + evaporation)

parameters: q < Q, f

Pedestrian model

motion described by stochastic dynamics: transition probabilities

interactions:

Virtual chemotaxis

chemical trace: *long-ranged* interactions are translated into *local* interactions with *"memory"*

Long-ranged Interactions

Problems for complex geometries:

Walls "screen" interactions

Models with local interactions ???

Floor Field CA: Basics

Cellular automaton model with stochastic dynamics

Space divided into cells (40*40 cm²)

Exclusion principle: no more than one pedestrian per cell

Discrete time: parallel (synchronous) dynamics

- \rightarrow natural timescale
- \rightarrow calibration and <u>quantitative</u> predications possible!!

Motion only to neighbour cells $(v_{max} = 1)$

Transition Probabilities

Stochastic motion, defined by transition probabilities

3 contributions:

- Desired direction of motion
- Reaction to motion of other pedestrians
- Reaction to geometry (walls, exits etc.)

Unified description of these 3 components

Floor Field Model

Free motion: specified by average velocity $\langle \bm{v} \rangle~$ and variance σ^2

Floor field = virtual field that modifies the transition probabilities

2 types:

- Dynamic floor field: is modified by the motion of the pedestrians (they create a "trace")
- Static floor field: not influenced by pedestrians; determined by geometry

General principle: motion into direction of larger fields is preferred

Dynamic Floor Field

Motion increases field strength in starting cell \Rightarrow pedestrians change dynamic field \Rightarrow motion creates a trace

Dynamic floor field has dynamics:

diffusion + decay

 \Rightarrow broadening and dilution of trace

Static Floor Field

- Not influenced by pedestrians
- no dynamics (constant in time)
- modelling of influence of infrastructure

Example: Ballroom with one exit

Lane Formation

velocity profile

counterflow: left and right mover

Evacuation Simulations

Influence of the different floor fields: individual behaviour (static) vs. herding (dynamic)

static field dominates: normal situation full knowledge about infrastructure, e.g. shortest way to the exits

dynamic field dominates: emergency situation ("panic") herding behaviour

Friction

Conflict: 2 or more pedestrians choose the same target cell

Friction: not all conflicts are resolved!

friction constant μ = probability that no one moves

Artefact or Real Effect ?

conflicts reduce efficiency of simulations

 \rightarrow often avoided by special update choice

However: Conflicts and friction correspond to real effects, e.g.

- physical contact
- moment of hesitation

Friction at Exits

Friction at exits increases evacuation times by reducing the outflow

Granular materials: Arching

Evacuation Scenario With Friction Effects

Faster-is-slower effect

Friction in Evacuation Processes

Friction most important close to exits and other bottlenecks \Rightarrow have a direct influence on evacuation times

away from exits it can even have positive effects, e.g.
 because jamming at door is suppressed
 ⇒ Faster-is-slower effect

Competitive vs. Cooperative Behaviour

Experiment: egress from aircraft

(Muir et al. 1996)

Evacuation times as function of 2 parameters:

- motivation level
 - competitive (T_{comp})
 - cooperative (T_{coop})
- exit width w

Empirical Egress Times

Model Approach

(Kirchner, Klüpfel, Nishinari, Schadschneider, Schreckenberg 2003)

Fundamental diagram

empirically: non-symmetric maximal flow at small densities

Dependence on maximal velocity

no non-monotonicity for realistic parameter values !

Summary

Ant traffic on existing trails and pedestrian dynamics can be described by similar models

interactions: local (real/virtual chemotaxis)

ant trails: anomalous fundamental diagrams possible formation of loose clusters

pedestrian dynamics: no 'intelligence' required collective effects reproduced (lane formation etc.) applications to safety analysis