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Section 1: Computations of the Kohn-Müller model

The sharp interface Kohn-Müller model
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Computational results



Simplified model which may capture twinning at a
boundary

Twinning in Copper Aluminum Nickel (picture by Chu and
James)



The Kohn-Müller model
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Equation of motion

ρwtt − β∆wt = 15(3w2
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Numerical Results for the Kohn-Müller model

(a) A plot showing the evo-
lution of the different energy
components.

(b) Initial Iterate Contour plot
of ε2

2 w2
xx .

A local minimum for the Kohn-Müller energy functional with
ρ = 1, β = 0.1 and ε = 0.0316.



Numerical Results for the Kohn-Müller model

(c) Final iterate. Colours show
the function, w .

(d) Contour plot of 5
2 w2

y in the
final iterate.

A local minimum for the Kohn-Müller energy with ρ = 1, β = 0.1
and ε = 0.0316.



Numerical Results for the Kohn-Müller model

(e) Contour plot of 15
4 (w2

x − 1)2

in the final iterate.
(f) Contour plot of ε2

2 w2
xx in the

final iterate.

A local minimum for the Kohn-Müller energy functional with
ρ = 1, β = 0.1 and ε = 0.0316.



Numerical Results for the Kohn-Müller model

(g) A plot showing the evo-
lution of the different energy
components.

(h) Initial Iterate Contour plot
of ε2

2 w2
xx .

A local minimum for the Kohn-Müller energy functional with
ρ = 1, β = 0.1 and ε = 0.001.



Numerical Results for the Kohn-Müller model

(i) Final iterate. Colours show
the function, w .

(j) Contour plot of 5
2 w2

y in the
final iterate.

A local minimum for the Kohn-Müller energy with ρ = 1, β = 0.1
and ε = 0.001.



Numerical Results for the Kohn-Müller model

(k) Contour plot of 15
4 (w2

x − 1)2

in the final iterate.
(l) Contour plot of ε2

2 w2
xx in the

final iterate.

A local minimum for the Kohn-Müller energy functional with
ρ = 1, β = 0.1 and ε = 0.001.



Scaling law predicted by Kohn and Müller for the total
energy
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Energy scaling, reference line drawn for ease of comparison.
For small ε good agreement with theoretical predictions.



Section 2: Computations of the Aviles-Giga model

The model
The conjecture
Computational results



The model

The energy to minimise∫
1
4ε(w

2
x + w2

y − 1)2 + ε
2 (∆w)2 dxdy

limiting solution as ε→ 0,

w2
x + w2

y = 1

and minimise ∫
J∇w

√
2

12 |[∇w ]|3 dH1

Remarks:
1 Assume a one dimensional interface
2 The above assumption leads to equipartition of energy



Points which need to be demonstrated for the
conjecture to hold

The Γ–limit is infinite unless wxx + wyy = 1 almost
everywhere
The proposed sharp interface limit |∇w |/3 is correct
The asymptotic energy lives on a one dimensional defect
set, and lower dimensional singularities carry no energy

DeSimone, Kohn, Müller and Otto



Equation of motion

The energy to minimise∫
1
4(w2

x + w2
y − 1)2 + ε2

2 (∆w)2 dxdy

Viscoelastic dynamics

ρwtt − β∆wt

=
[
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y
− ε2∆2w



Numerical Results for the Aviles-Giga model 1
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(m) A plot showing the evo-
lution of the different energy
components.
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(n) Initial Iterate

Numerically computed minimizer for the Aviles-Giga energy
functional with ρ = 1, β = 1.0, ε = 0.05, w(y = ±1) = 0 and
wyy (y = ±1) = 0.



Numerical Results for the Aviles-Giga model 1

0
0.5

1

−1

0

1
−0.5

0

0.5

1

 

xy
 

fu
nc

tio
n

0

0.2

0.4

0.6

0.8

(o) Final Iterate
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(p) Viscosity solution assum-
ing equipartition of energy

Numerically computed minimizer for the Aviles-Giga energy
functional with ρ = 1, β = 1.0, ε = 0.05, w(y = ±1) = 0 and
wyy (y = ±1) = 0.



Numerical Results for the Aviles-Giga model 1
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(q) Contour plot of interface
energy term ε2

2 (∆w)2 in the fi-
nal iterate.
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(r) Contour plot of 1
4 (w2

x +w2
y −

1)2 in the final iterate

Numerically computed minimizer for the Aviles-Giga energy
functional with ρ = 1, β = 1.0, ε = 0.05, w(y = ±1) = 0 and
wyy (y = ±1) = 0.



Numerical Results for the Aviles-Giga model 2
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(s) A plot showing the evo-
lution of the different energy
components.
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(t) Initial Iterate

Numerically computed minimizer for the Aviles-Giga energy
functional with ρ = 1, β = 1.0, ε = 0.01,
w(y = ±1) = −0.05 sin(2πx) and wyy (y = ±1) = 0.



Numerical Results for the Aviles-Giga model 2
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(u) Final Iterate

Numerically computed minimizer for the Aviles-Giga energy
functional with ρ = 1, β = 1.0, ε = 0.01,
w(y = ±1) = −0.05 sin(2πx) and wyy (y = ±1) = 0.



Numerical Results for the Aviles-Giga model 2
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(v) Contour plot of interface
energy term ε2

2 (∆w)2 in the fi-
nal iterate.
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(w) Contour plot of 1
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Numerically computed minimizer for the Aviles-Giga energy
functional with ρ = 1, β = 1.0, ε = 0.05, w(y = ±1) = 0 and
wyy (y = ±1) = 0.



Numerical Results for the Aviles-Giga model 3
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(x) A plot showing the evo-
lution of the different energy
components.

(y) Initial Iterate

Numerically computed minimizer for the Aviles-Giga energy
functional with ρ = 1, β = 1.0, ε = 0.0025,
w(y = ±1) = −0.05 sin(2πx) and wyy (y = ±1) = 0.



Numerical Results for the Aviles-Giga model 3

(z) Final Iterate

Numerically computed minimizer for the Aviles-Giga energy
functional with ρ = 1, β = 1.0, ε = 0.0025,
w(y = ±1) = −0.05 sin(2πx) and wyy (y = ±1) = 0.



Numerical Results for the Aviles-Giga model 3
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() Contour plot of interface en-
ergy term ε2

2 (∆w)2 in the final
iterate.
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() Contour plot of 1
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y −

1)2 in the final iterate

Numerically computed minimizer for the Aviles-Giga energy
functional with ρ = 1, β = 1.0, ε = 0.0025, w(y = ±1) = 0 and
wyy (y = ±1) = 0.



Result Summary

w(y = ±1) ε
∫ 1

4 (w2
x + w2

y − 1)2
∫

ε2

2 (∆w)2 Total Energy
ε

0 0.05 0.0235 0.0236 0.944
0 0.01 0.00471 0.00471 0.942

−0.005 sin(2πx) 0.05 0.0235 0.0237 0.942
−0.005 sin(2πx) 0.01 0.00471 0.00471 0.942

0.05 sin(2πx) 0.05 0.0217 0.0261 0.956
0.05 sin(2πx) 0.01 0.00451 0.00458 0.909
0.05 sin(2πx) 0.0025 0.000846 0.00132 0.868

Prediction that (Total Energy)/ε= 2
√

2/3 ≈ 0.943 if Aviles-Giga
conjecture holds and zero boundary conditions.



Conclusions

Simulations can be a useful tool to test scaling
assumptions
For the Kohn-Müller model, the simulations are in
agreement with the model
For the Aviles-Giga model, the conjecture may not hold
when non-zero boundary conditions are applied



The 2D Navier-Stokes Equation



Introduction

Consider incompressible case only
Model for dynamics in a uniform and thin layer of water

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + µ∆u

∇ · u = 0.

u(x , y) = (u(x , y), v(x , y)), p pressure, µ viscosity, ρ,
density



Vorticity-Streamfunction Formulation

ω = ∇× u =
∂v
∂x
− ∂u
∂y

= −∆ψ

ρ

(
∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y

)
= µ∆ω

and

∆ψ = −ω.



Time Discretization

ρ

[
ωn+1,k+1 − ωn

δt

+
1
2

(
un+1,k ∂ω

n+1,k

∂x
+ vn+1,k ∂ω

n+1,k

∂y
+ un ∂ω

n

∂x
+ vn ∂ω

n

∂y

)]
=
µ

2
∆
(
ωn+1,k+1 + ωn

)
,

and

∆ψn+1,k+1 = −ωn+1,k+1,

un+1,k+1 =
∂ψn+1,k+1

∂y
, vn+1,k+1 = −∂ψ

n+1,k+1

∂x
.

Fixed point iteration used to obtain nonlinear terms



Example Videos

http://www-personal.umich.edu/˜cloutbra/
research.html

Simulations on a single NVIDIA Fermi GPU about 20 times
faster than a 16 core CPU

http://www-personal.umich.edu/~cloutbra/research.html
http://www-personal.umich.edu/~cloutbra/research.html


The Real Cubic Klein-Gordon
Equation



The Real Cubic Klein-Gordon Equation

utt −∆u + u = |u|2u

E(u,ut ) =

∫
1
2
|ut |2 +

1
2
|u|2 +

1
2
|∇u|2 − 1

4
|u|4 dx

un+1 − 2un + un−1

(δt)2 −∆
un+1 + 2un + un−1

4
+

un+1 + 2un + un−1

4

= ±
∣∣un∣∣2 un

Parallelization done using 2decomp library for FFT and
processing independent loops



Relevant Previous Work

Donninger and Schlag (2010) - Study of blowup of radially
symmetric solutions, 2nd order symplectic schemes
Bao and Yang (2006) and Yang (2007) 2D simulations
Chen (2006) 4th order symplectic schemes
Hamaza and Zaag (2010) Solutions can only blow up in an
ODE like manner



Relevant Previous Work

Nakanishi and Schlag (2011) Characterization of behavior
of solutions near ground state

(i) Scattering to zero in both forward and backward time
(ii) Blow up in finite forward and backward time
(iii) Scattering to zero in forward time and blow up in backward

time
(iv) Blow up in forward time and scattering to zero in backward

time
(v) Trapping by the ground state ±Q in forward time and

scattering to zero in backward time
(vi) Scattering to 0 in forward time and trapping by the ground

state ±Q in backward time
(vii) Trapping by the ground state ±Q in forward time and blow

up in backward time
(viii) Blow up in forward time and trapping by the ground state

±Q in backward time
(ix) Trapping by ±Q in both forward and backward time



What is Q?

∆Q −Q = Q3.



Example Videos

Dispersion 1
Dispersion 2
Blow up



Interaction of 2 Solitons

Initial Conditions

u(t = 0) = αQ1 + βQ−1

ut (t = 0) = 2β exp
(
−x2 − y2 − z2

)
cos(4x) cos(6y) cos(8z)

where α ∈ (0,1] and β ∈ (0,1].



Interaction of 2 Solitons
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The × indicate numerical experiments in which there was
blowup and the o indicate numerical experiments for which
the solution dispersed. As predicted from theory, here is a
surface separating solutions which blow up and those
which disperse.



Interaction of 2 Solitons

Work in reasonable agreement with previous work by
Donninger and Schlag
Again, exact criteria to examine for distinguishing between
blow up and global existence is unclear



Simulations and Videos by Brian Leu, Albert Liu, and
Parth Sheth

http://www-personal.umich.edu/˜alberliu/

http://www-personal.umich.edu/˜pssheth/

http://www-personal.umich.edu/~alberliu/
http://www-personal.umich.edu/~pssheth/


Conclusion

Easy to program numerical method which can be used to
study semilinear partial differential equations
Method parallelizes well on hardware with good
communications so a good tool to introduce parallel
programming ideas
Research tool to investigate and provide conjectures for
behavior of solutions to partial differential equations
Research tool to investigate computer hardware
performance and correctness
Better user interface and integration with visualization
would help make it easier for those without strong
programming backgrounds



Acknowledgements and References

The Marie Curie Research Training Network MULTIMAT
The HPC-EUROPA project
EPSRC grants, OxMOS “New Frontiers in the Mathematics of Solids”
and OxPDE “Oxford Center for Nonlinear Partial Differential Equations”
Warwick Center for Scientific Computing
The Extreme Science and Engineering Discovery Environment
(XSEDE), which is supported by National Science Foundation grant
number OCI-1053575.
Hopper at the National Energy Research Scientific Computing Center
SCREMS NSF DMS-1026317
The Blue Waters Undergraduate Petascale Education Program
administered by the Shodor foundation
The Division of Literature, Sciences and Arts at the University of
Michigan
B.K. Muite, D.Phil. Thesis, University of Oxford 2010
G. Chen, B. Cloutier, N. Li, B.K. Muite, P. Rigge and S. Balakrishnan, A.
Souza, J. West, “Parallel Spectral Numerical Methods”
http://en.wikibooks.org/w/index.php?title=Parallel_
Spectral_Numerical_Methods

http://en.wikibooks.org/w/index.php?title=Parallel_Spectral_Numerical_Methods
http://en.wikibooks.org/w/index.php?title=Parallel_Spectral_Numerical_Methods

