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Classically, logical consequence can be equivalently defined as truth transmission or as
“backward” falsity transmission, in the following sense: that a consequence statement Γ ` ∆
holds can be equated either with the condition that if all Γs are true, at least one of the ∆s must
be true as well, or, equivalently with the condition that if all ∆s are false, at least one of the Γs
must be false as well.

Intuitionism replaces the classical notion of truth with the constructive one of proof, where
proofs are understood, via the Curry-Howard isomorphism, as computer programs: A conse-
quence claim Γ ` A is justified if there is an algorithm that taken a proof of each of the Γs as
input produces a proof of A as output. Such algorithms are associated to deductions of Gentzen-
Prawitz natural deduction systems. In particular to each rule for constructing deductions there
is associated a basic operation, in the case of the implicational fragment the operations being
λ-abstraction and function application:

[x : A]

t : B
λx.t : A⊃ B

t : A ⊃ B s : A
app(t, s) : B

An inference rule is thus seen as encoding an operation that given proofs of the premises yields
a proof of the conclusion.

In the present paper we show how the deductions of the implicational fragment of intuition-
istic logic can be equivalently understood as computer programs that taken a refutation of their
end-formula as input yield a refutation of (the conjunction of) their assumptions as output, and
thus that also in the constructive setting it is possible, like in the classical case, to dualize the
account of consequence by exchanging truth with falsity and reversing the direction of trans-
mission.

Refutation is here understood as a primitive (metalinguistic) notion rather than analysed in
terms of an (object language) operator of negation. At the level of atomic propositions, such
an idea is not new (for instance, it is common to introduced a primitive predicate of apartness
as the genuine constructive counterpart of negated equality). Here we propose to go one step
further, giving a constructive meaning to the refutation of logically complex formulas starting
from the refutation of their components.

To attain this goal, one has to associate to each inference rule particular operations that
given a refutation of the conclusion yield a refutation of the premises. But what should these
operations be?

[? : A]

? : B
t : A⊃ B

? : A ⊃ B ? : A
t : B

To answer the question, we do not start from the common idea according to which a refu-
tation of A⊃ B is a pair consisting of a proof of A and a refutation of B. Though intuitive, this
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makes the notion of refutation depend on the one of proof. Our starting point is rather the idea
that to refute a A ⊃ B one has to show that it is impossible to convert a refutation of B into a
refutation of A (this we take the closest way of dualizing the idea that a proof of A ⊃ B is a
function from proofs of A to proofs of B).

Taking this idea seriously, it follows that given a refutation t of B we have two alternatives
(among which we may not be able to tell which is the case): either it is impossible to convert t
into a refutation of A, or it is possible to do so, though we may not know how. We take the op-
eration associated to the elimination rule to encode these two alternatives and thus as splitting
the computation into two threads, one representing the alternative in which it is impossible to
transform the refutation of B into one of A (that is, in which A⊃ B has been refuted), the other
representing the alternative in which a refutation of A could be produced out of the refutation
of B:

mkc(t, x) : A ⊃ B x〈t〉 : A

t : B
The term x〈t〉 should be understood as having no real computational content, since we need

not know anything about the refutation of A. In this sense it reminds of a variable, but it is not
a real variable: we have not assumed to have a refutation x of A outright, but only postulated
it as a possible alternative induced by the availability of a refutation t of B. (That x is not a real
variable will be made precise below by taking the displayed occurrence of the variable x to be
bound in x〈t〉).

The notion of impossibility underlying the informal explanation of the refutation conditions
of A⊃ B is made precise in operational terms using the notion of error. Suppose that among the
threads of a computation starting from a refutation x of B there are some that output refutations
s1, . . . , sn of A. If one has a refutation t of A ⊃ B, one knows that these threads are spurious,
i.e. that they represent impossible alternatives, since to have a refutation of A⊃ B is to know
that it is impossible to convert refutations of B into refutations of A. Thus these threads can be
closed with an error message that “explains” the incompatibility between the availability of a
refutation of A ⊃ B and the content of the thread (the possibility of producing—among other
alternatives—refutations of A from a refutation of B).

We can thereby decorate the introduction rule for implication as follows:

err(t | x 7→ si)

[s∗i : A]

x〈t〉 : B

t : A⊃ B
where the error message err(t | x 7→ si) plays the role of a discharge index in linking the as-
sumptions with the inference rule at which they are discharged. The operational content of
the rule is thus the following: when one has a refutation of A ⊃ B one can reason as if one
had a refutation of B (represented by the “merely stipulated variable” x〈t〉) with the additional
information that subsequently generated refutations s∗i ≡ siJx〈t〉/xK of A are spurious.

From these introductory remarks the following fundamental difference between the usual
Curry-Howard correspondence and the correspondence between deduction and terms pro-
posed in the present paper should be clear. In the usual Curry-Howard interpretation a whole
deduction is encoded by the (unique) proof-term decorating the end-formula of the deduc-
tion, and the free variables of this term are those decorating the undischarged assumptions of
the deduction. In the refutation-based interpretation we are proposing, a whole deduction is
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encoded by a family of terms decorating the undischarged assumptions and error messages as-
sociated to the discharged assumptions, and these terms and error messages will all depend on
the (unique) variable decorating the end-formula of the deduction. Intuitively, each term and
error message of a family should be thought of as corresponding to a thread of an algorithm
that, taken a refutation of the end-formula as input, produces either a refutation of the (undis-
charged) assumptions or an error message as output. In general we are not in the position of
selecting one thread as the one providing the “correct” output (for example, given a refutation
of B we cannot tell in general, if we can obtain a refutation of A or of A⊃ B).

It is worth remarking that to a deduction in which all assumptions have been discharged
(i.e. a proof of the end-formula) we associate an algorithm which takes a refutation of the end-
formula as input and outputs error messages from all of its threads. Informally, the algorithm
shows that it is impossible to refute the end-formula. The analysis of “provability” as “im-
possibility of refuting” is closely connected to the analysis of classical provability via a double
negation translation which lies at the basis of computational accounts of classical logic, espe-
cially of the λµ-calculus of Parigot [4]. In particular, in the context of the λµ-calculus, Crolard [3]
defined two operations: make-coroutine(t, α) and resume t with x 7→ s and used them to for-
mulate the Curry-Howard correspondence for subtractive logic (more commonly referred to as
bi-intuitionistic logic) an extension of intuitionistic logic with a connective dual to intuitionistic
implication.

The first author [1, 2] proposed several “parallel” variants of Crolard’s calculus, as a term as-
signment to dual intuitionistic logic (and linear versions thereof), in which Crolard’s operations
were taken as primitive rather than defined.

The goal of our paper is twofold: First to provide a very concise and crisp presentation of the
first author’s “parallel” calculus, with the hope of making the main idea underlying it accessible
to the widest audience possible. Second, we show that these operations can be used to develop
a term assignment for refutations in implicational logic, rather than for proofs in subtractive
logic as Crolard (and the first author) did.

After introducing the calculus by presenting terms, typing rules and conversions, we give
a proof of strong normalization via an embedding of our calculus in λ-calculus. We close the
paper with a comparison between our calculus and Crolard’s original term assignment for sub-
tractive logic, stressing the significance of the parallel nature of the calculus we propose.
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