Solar Wind - Magnetosphere Interaction: non linear dynamics driven by Kelvin-Helmholtz vortices

F. Pegoraro, M. Faganello, F. Palermo

Vienna, WPI, 2011
The physical system: solar wind – magnetosphere

The connection between the solar wind and the Earth's magnetosphere is mediated through the magnetosheath and magnetopause boundaries.
The **great interest in the analysis of the processes** at play is:

i) Importance in the shaping and dynamics of the system

ii) A wealth of in-situ diagnostics of improving quality (electromagnetic profiles and particle distribution functions)

Question: how can we represent the 3D large scale field?

Is it a true equilibrium in the MHD sense?

Can satellite data help us?
The system

The solar wind-magnetosphere coupling strongly depends on solar wind properties and their variability, as the density and velocity value or the Interplanetary Magnetic Field orientation.

High-latitude reconnection in both hemispheres converts northward magnetosheath field lines into closed geomagnetic field lines allowing for the entry of the magnetosheath plasma into the magnetosphere [McFadden et al., 2008]
The system

At low latitude, when the IMF is mostly southward:
magnetic reconnection dominates the *transport*

If reconnection at low latitude would be the only relevant phenomena for mixing, the northward periods (IMF and geomagnetic field parallel) should be relatively quiet -> flank regions dominated by the tenuous and hot plasma of the Earth plasma sheet

On the contrary: during *northward periods* the near-Earth plasma sheet becomes significantly denser and colder near the flanks suggesting an *enhancement of the plasma transport* across the magnetopause [Terasawa et al., Geophys. Res. Lett. 24, 935, 1997]
The Solar Wind - Earth's Magnetosphere interaction in regions where the velocity shear generates rolled-up vortices has been evidenced by satellite in-situ measurements [Fairfield et al., 2000; Hasegawa et al., 2004].

Mixing efficiency strongly increased!

Complex non linear phenomenology induced by the K-H vortices

Quasi periodic perturbations often observed near the flank magnetopause
The Kelvin - Helmholtz instability

It has been proposed1,2 that the shear flow between the solar wind and the magnetosphere drives the formation of Kelvin - Helmholtz vortices that tend to pair in the non-linear phase.

This provides an efficient mechanism for the formation of a mixing layer.

At low latitude the magnetic field is nearly \textit{perpendicular} to the plane of the flow direction and of its transverse variation and does not inhibit the development of a "quasi-2D" Kelvin - Helmholtz instability.

1 G. Belmont, G., Chanteur, in “Turbulence and Nonlinear Dynamics in MHD Flows”, 1989

2 A. Miura, Phys. Plasmas 4, 2871, 1997
KHI: Fast Growing Mode and vortex pairing

Net transport of momentum across the initial velocity shear occurs both when the Fast Growing Mode and its sub-harmonics (paired vortices) grow, and when the vortex pairing process takes place.

In a homogeneous density system,

the momentum transport caused by vortex pairing process is much larger than that due to the growth of the FGM\(^1\) thus leading to a faster relaxation of the velocity shear.

Vortex pairing is therefore expected to be an efficient process in the nearly two-dimensional external region of the magnetopause at low latitude\(^1\).

\(^1\)A. Otto et al., J. Geophys. Res. 105, 21175 (2000)
The initial magnetic field is mainly perpendicular to the plane where the K-H instability develops and have no inversion points.

The magnetospheric and solar wind plasmas are represented using red and blue passive tracers.

The equilibrium velocity field in the commoving frame.

\[\mathbf{B} = B_0(x) \sin \theta \mathbf{e}_y + B_0(x) \cos \theta \mathbf{e}_z \]

\[\theta < 0.1 \Rightarrow \text{K-H unstable} ! \]
Vortex chain generated by the KH instability

NL dynamics: competition between vortex pairing, Rayleigh-Taylor, Kelvin-Hemholtz, Reconnection

In-plane magnetic field advected by the rolled-up vortices and thus increasingly stretched and compressed

Sub-magneto-sonic regime dynamics dominated by vortex pairing and by secondary instabilities
Importance of magnetic field

In many astrophysical and laboratory systems with $\beta \approx 1$, the large scale dynamics is governed by the interplay between flow and magnetic field. At larger β, the flow becomes the main driver. However, even in this limit, magnetic fields can play a key role in the plasma dynamics by violating (locally) the ”ideal” Ohm law thus allowing the system to access ideally forbidden energetic states.

The process capable of violating the linking condition is known as

Magnetic Reconnection

a fundamental plasma physics process being **the only one capable of** affecting the **global energy balance of the system**, of interest in astrophysics, as well as of **reorganizing the large scale magnetic topology**, a fundamental aspect in magnetic fusion and in theoretical plasma physics.
During northward periods $B_{\text{in-plane}}$ is of the order of only a few percent with respect to $B_{\text{out-of-plane}}$.

Moreover, the MHD KH vortices generate sub-MHD fluctuations at increasingly small scales where ideal constraints are violated thus allowing the solar wind to enter the Earth's magnetosphere [Fujimoto et al., 1998].
The model

\[\frac{\partial n}{\partial t} + \nabla \cdot (n \mathbf{U}) = 0 \quad \text{(Quasi neutrality)} \]

\[\frac{\partial (n S_{e,i})}{\partial t} + \nabla \cdot (n S_{e,i} \mathbf{u}_{e,i}) = 0 \quad S_{e,i} = P_{e,i} n^{-\gamma} \]

\[\frac{\partial (n \mathbf{U})}{\partial t} + \nabla \cdot \left[n (\mathbf{u}_i \mathbf{u}_i + d_e^2 \mathbf{u}_e \mathbf{u}_e) + P \mathbf{I} - \mathbf{BB} \right] = 0 \]

\[(1 - d_e^2 \nabla^2) \mathbf{E} = -\mathbf{u}_e \times \mathbf{B} - \frac{1}{n} \nabla P_e \]

\[B_0(x) = \left[B_{0,R}^2 + 2 (P_{0,R} - P_0(x)) \right]^{1/2} \]

\[P_o \equiv \text{total thermal pressure} \]

Problems:

- \(\rho_i \sim d_i \sim 1000 \text{ Km} \) \(\gg \) \(\rho_e \sim d_e \gg l_{\text{coll}} \); \(\Pi_{1,j} \) terms important!
- 1. Kinetic model? But how to initialize \(U(x)e_y \)? Computationally heavy.
- 2. Fluid modelling of \(\Pi_{1,j} \)? But then \(Q_{i,j,k} \)? And \(\beta > 1 \)?

We adopt as first a “simple” fluid approach with isothermal/adiabatic closure.
Initial conditions

Large-scale, sheared velocity field + constant magnetic field.
Constant density (R-T excluded)

\[M_s = U_0 / C_s = 1.0 \]

Sub sonic regime
Quasi-perp. magnetized plasma

\[M_{A,\perp} = U_0 / V_{A,\perp} = 1.0; \quad M_{A,\parallel} = V_0 / U_{A,\parallel} = 20.0 \]

\[U_0 = 1.0; \quad L_x = 100; \quad L_y = 30\pi; \quad L_u = 3; \quad L_n = 0; \]

\[V_{eq} = \frac{V_0}{2} \tanh(x/L_{eq})e_y \]

\[B = B_0(x) \sin \theta e_y + B_0(x) \cos \theta e_z \quad \theta = 0.05 \]

Transparent boundary conditions\(^1\) along x-axis

\[[\theta < 0.1] \]

System evolution
(plasma passive tracer and magnetic field lines)
Plasma passive tracer and magnetic field lines: formation of two vortices by the K-H instability.
The inflow plasma velocity at the X-points is \(\sim 0.1 \, c_{A, \text{local}} \) (as expected for \textit{fast magnetic reconnection*}) \(\Rightarrow \gamma \sim 0.1 \, c_A / L_B, \text{local} \sim 0.15 \) compatible with \(d \ln E_z / dt \) at the X-point.

\[\gamma \sim 0.15 \]

In the time interval of a few growth times the two vortices can only rotate by a few degrees.

The plasma displacement and the current rearrangement due to vortex rotation are not sufficient rapid to interfere with the reconnection process.

Significant portions of the red plasma have been engulfed into the blue plasma region and vice versa.

Change in large scale magnetic field topology

The field line ribbon shrinks and finally opens up

A **new ribbon** of field lines appears which no longer separates the red and the blue plasma regions.

Significant portions of the red plasma have been engulfed in the form of "blobs" into the blue plasma region and vice versa.
The Hall term \(L_u \gg d_i \implies \) electrons and ions both initially magnetized

In this region the Hall term is comparable to the UXB term

\(D_i = [u_i \times B + E]_z \)

\(\sim \) several \(d_e \)

\(D_e = [u_e \times B + E]_z \)

\(\sim \) several \(d_i \)

The value of the in-plane magnetic field inside the current sheet is strongly enhanced by the compressional motion of the vortices.
Initial conditions

Large-scale, sheared velocity field + \textit{density variations};
Purely perpendicular magnetic field: \textit{Reconnection excluded}

According to the satellite observations, \textit{the plasma density increases} from the \textit{Magnetosphere} to the \textit{Magnetosheath} while the temperature decreases in the same direction.

\begin{equation}
V_{eq} = \frac{V_0}{2} \tanh(x/L_{eq}) e_y
\end{equation}

\begin{equation}
n(x) = n_0 - \frac{\Delta n}{2} [(1 - \tanh(x/L_{eq})]
\end{equation}
Secondary KH and RT instabilities at play
Secondary Rayleigh-Taylor Instability

The **density variation** between the two plasmas strongly modifies the non-linear evolution of the K-H instability possibly leading to the onset of turbulence\(^1,2\).

The *centrifugal acceleration* of the rotating K-H vortices acts as an "effective" *gravity* force on the plasma.

If the density variation is large enough, the **Rayleigh-Taylor** instability can grow along the vortex arms.

How quickly the vortex becomes turbulent is crucial since the turbulence caused by the onset of the R-T secondary instability may destroy the structure of the vortices before they coalesce and may thus be the major cause of the increase in the width of the layer with increasing velocity and density inhomogeneity.

\[V_0 = 1.0 ; \quad D_n = 0.8 \]

\[L_u = L_n = 3, \quad L_x = 90, \quad L_y = 30\pi; \]

\[M_S = U_0 / C_S = 1.0; \quad M_A = U_0 / C_A \]
Vortex pairing

formation of four vortices

Vortex interaction (inverse cascade)

vortices merging

\[V_0 = 2.0; \Delta_n = 0.5; \]
\[B_0 = 1 (B_{\text{in-plane}} = 0.0) \]
\[L_u = L_n = 3, \ L_x = 200, \ L_y = 60\pi; \]
Mixing layer

Strong density jump, \(\Delta n = 0.8 \)

- KHI
- Development of the **R-T instabilities** in the vortex arms
- Formation of a turbulent layer

Onset of the secondary instability

We consider each vortex separately and to be stationary.

We model the vortex as an "equilibrium". Inside two nearby vortex arms: n_1, u_1 more dense; n_2, u_2 less dense \implies density and velocity values off two superposed fluid plasmas in a slab geometry.

The two plasma slabs are subjected to an "effective" gravity which corresponds to the centripetal acceleration arising from the arms curvature.

$l_u, l_n \equiv$ scale length of the velocity and density gradient between the two arms; $\lambda \equiv$ wave length along the vortex arm associated to the observed R-T.

Typical values: $l_u \sim l_n \sim 1; \ 1 \leq \lambda \leq 10$ (dimensionless)
We model the system by a step-like configuration since the R-T instability is not affected by the finite value of the length l_n, at least when $\lambda \geq l_n$

$$\gamma_{RT} \approx \left[g_{\text{eff}} k (\alpha_1 - \alpha_2) \right]^{1/2}$$

where $\alpha_1 = \rho_1 / (\rho_1 + \rho_2)$, $\alpha_2 = \rho_2 / (\rho_1 + \rho_2)$

$g_{\text{eff}} \approx 0.1$ estimated using the Ω_{vortex} and r_{arms}

For $\lambda = 10, 4, 1$ we get $\gamma_{RT} = 0.2, 0.3, 0.6$
The K-H growth rate is not compatible with simulations

K-H modes are heavily affected by the finite value of the shear-length l_u

According to [1] we estimate the influence of the finite velocity shear layer on the secondary K-H instability that could develop in the vortex arms, as

$$\gamma_{KH,max} \approx 0.2 \ \Delta U / 2 \ l_u \approx 0.06$$

In conclusion, the R-T instability dominates

1 A. Miura et al., J. Geophys. Res. 87, 7431 (1982)
We observe that the variation of the angular velocity inside the vortex is not large enough to excite the Magneto-Rotational Instability. This suggests that this instability, which involves perturbations that depend on the z-coordinate is not important for the non-linear evolution of the KH vortex in a transverse magnetic field configuration and allows us to consider perturbations with $\frac{\partial}{\partial z} = 0$.

MRI important in accretion disks
(transport of angular momentum, amplifying fields, generation of turbulence…)

1E.P. Velikhov, Sov. Phys. JETP 9, 995 (1959)
The competition between the vortex pairing process and the development of a turbulent layer has important consequences from an *observational* point of view and can affect the transport properties of the system.

Pairing: density profile inclined in the x-direction with a thickness directly related to the size of the vortex.

Turbulence: a plateau is formed in the central region of the sheared layer. Note an asymmetric evolution of the average density profile, indicating a diffusion of the plasma from the dense to the tenuous region with a mixing thickness comparable with the FGM vortex size.
We observe well defined structures with typical length $\sim L_y / 3$ consisting of the well known1,2 step-like configuration containing filament-like profiles in the central region of the vortex.

Alternating high and low density filaments that do not exhibit a well defined wave length related to the transition of the system to a “turbulent” state with the formation of a mixing layer.

1H. Hasegawa et al., Nature 430, 755 (2004)
2A. Otto et al., J. Geophys. Res. 105, 21175 (2000)
Larger flows, hydrodynamic regimes

\[\bar{V}_0 = 3 \; ; \; \Delta n = 0.5 \; , \; B_{\text{in-plane}} = 0.02 \; ; \]
Strong flow generates low density vortices.
Mixing extremely efficient.

\[V_0 = 3.0 \; ; \; \Delta_n = 0.5 \; ; \]
\[B_0 = 1 \; (B_{\text{in-plane}} = 0.02) \]

\[L_u = L_n = 3, \; L_x = 200, \; L_y = 120\pi; \]

\[M_S = U_0 / C_S = 1.0; \; M_A = U_0 / C_A \]
From sub-sonic to super-magnetosonic regimes

The physical properties of the solar wind change when crossing the Earth's bow shock and moving tailward inside the magnetosheath where, according to the Rankine-Hugoniot relations, plasma density and temperature increases thus leading to subsonic velocities.

However, at larger distances the shocked solar wind regains a fraction of its initial speed as it flows past the magnetosphere\(^1\) while the plasma temperature decreases more and more\(^2\). In particular, near the magnetopause flanks, the velocity of the magnetosheath plasma is increasingly accelerated as the distance from the Earth increases.

⇒ we can expect a transition to a supersonic regime for the KHI in the tail region of the magnetopause

\(^2\) Spreiter et al., Planet. Space Sci., 14, 223 (1966)
Super-magnetosonic regimes

We study this regime by increasing V_0

Transition towards m.s. Mach numbers ≥ 1:
the vortex acts as an obstacle leading to formation of shocks structures extending far from the transition region.

System dynamics: in this “strong” flow regime, rarefaction and compressional effects play a key role. In particular the vortices are now of low density thus modifying the non linear dynamics (pairing, secondary instabilities) observed in the "low” Mach number regime.
Importance of the shocks

1) The shocks could provide an efficient mechanism for particle acceleration.

Usually the existence of super-thermal ions and electrons observed in the cold magnetosheath has been explained as a product of magnetic reconnection and/or a hot magnetospheric plasma injection1,2. The particle acceleration associated with the, vortex induced, shocks could instead provide a different explanation.

2) Periodic shock structures observed away from the magnetopause could provide an indirect signature of fully developed KH vortices at the magnetopause in supersonic conditions.

1 Fujimoto et al., J. Geophys. Res. 103, 2297 (1998)
2 Lavraud et al., J. Geophys. Res. 110, A062109 (2005)
Observations

The super-sonic regime has been recently considered1 using spacecraft measurements around the Earth's Magnetopause during northward magnetic field periods. Typical values of the Magnetosheath sonic and \textbf{magneto-sonic Mach numbers} were $M_{s}^{\text{sw}} \approx 1.4, 1.9$ and $M_{f}^{\text{sw}} \approx 1.7, 2.0$, $(X_{\text{GSM}} \approx -4 \text{ R}_E, X_{\text{GSM}} \approx -13 \text{ R}_E)$

Previous investigations2,3 of K-H vortices signatures at $X_{\text{GSM}} \approx -14 \text{ R}_E$, have observed larger sonic and magneto-sonic Mach numbers, namely $M_{f}^{\text{sw}} \approx 3.7, M_{f}^{\text{sw}} \approx 2.2$

1 Gnawi et al., J. Physics: Conf. Series 166, 012022 (2005)
3 Hasegawa et al., Nature 430, 755 (2004)
Vortex propagation due to density variations

The most important effect with respect to the uniform density regime is that the vortices now propagate in the same direction of the flow where the plasma density is larger (but less than expected).

\[V_{\text{vort}}^{\text{thor}} = \frac{V_0}{2} \left(\frac{n_{0,R} - n_{0,L}}{n_{0,R} + n_{0,L}} \right) \]

(incompressible plasma with density discontinuity)

The vortex velocity vs. the flow velocity \(V_0 \) in the simulation reference frame

\[M_f^{sw} = \frac{V^{sw}}{c_f} \quad c_f = (c_s^2 + c_A^2)^{1/2} \]

\[M_{f,L/R}^{\text{vort}} = \frac{U_{L/R}}{c_{f,L/R}} \quad U_{L/R} = \|V_0/2 \mp V_{\text{vort}}\| \]

Fast magneto-sonic Mach

Convective Mach number
Numerical simulations

The transition occurs before reaching a Magnetosheath vortex Mach number equal to one

\[M_{f,R}^{\text{vort}} \leq 1 \]

(non propagating ~ 1.5)

velocity fluctuations resulting from the KHI development and associated with the vortices enhance the value of the "local" vortex Mach number.

\[M_{f,R}^{\text{vort}} \leq 1 \]

plasma density, \(V_0 = 5 \)

plasma density, \(V_0 = 7 \)
The perpendicular magnetic fluctuations δB_z are practically superposed to the density fluctuations δn thus identifying the shock as a \textit{perpendicular magneto-sonic shock}, in agreement with the fact that it propagates, with respect to the magnetic field, at an angle $\pi/2 - \theta$ where $\theta < (m_e/m_i)^{1/2}$

Upstream (downstream) plasma velocity > (<) magnetosonic velocity

In the shock frame of reference, the \textbf{Rankine-Hugoniot} conditions for a fast \textit{magneto-sonic} shock are satisfied.

$$\frac{n_2}{n_1} \sim \frac{B_2}{B_1} \sim \frac{u_{y,1}}{u_{y,2}}$$
oblique shocks

Dispersive effects: we decrease the angle between the direction of propagation of the shock and the magnetic field to $\theta = 0.3 \gg (m_e/m_i)^{1/2}$, leaving unchanged the other parameters. The dispersion relation reads

$$\frac{\omega^2}{k^2} = c_A^2 (1 + k^2 d_i^2 \theta^2)$$

thickness $\ell_s \sim \theta d_i$
CONCLUSIONS

The Solar wind - Magnetosphere low latitude boundary layer:

(i) Play a key role for the entry of solar wind plasma in the Magnetosphere
(ii) It is a laboratory of excellence for basic processes in plasmas
(iii) It is one of the best example of multi-scale plasma dynamics

Results

We have understood many key processes at play in the dynamics

Problems and future work

(i) Need for satellite data analysis in the transition region: large scale fields
(ii) Need of a 3D initial configuration (MHD equilibrium ?)
(iii) Need of kinetic simulations