Nonlinear dispersive asymptotic models for the propagation of internal waves

Vincent Duchêne¹ Samer Israwi² Raafat Talhouk²

¹IRMAR, Univ. Rennes 1 - UMR 6625

²Faculté des Sciences I, Université Libanaise, Beirut

Workshop on "Modified dispersion for dispersive equations and systems" WPI, Vienna, Sept. 23–27, 2013

Scalar models

Internal gravity waves

Stratification, due to variation of salinity and temperature.¹

1. Credits : St. Lawrence Estuary Internal Wave Experiment (SLEIWEX) http://myweb.dal.ca/kelley/SLEIWEX/index.php

Vincent Duchêne

Coupled models

Scalar models

Internal gravity waves

Stratification, due to variation of salinity and temperature.¹

1. Credits : St. Lawrence Estuary Internal Wave Experiment (SLEIWEX) http://myweb.dal.ca/kelley/SLEIWEX/index.php

Vincent Duchêne

• Horizontal dimension d = 1, flat bottom, rigid lid.

• Irrotational, incompressible, inviscid, immiscible fluids.

• Fluids at rest at infinity, (very small) surface tension.

Vincent Duchêne

Coupled models

Scalar models

The full Euler system

- Horizontal dimension d = 1, flat bottom, rigid lid.
- Irrotational, incompressible, inviscid, immiscible fluids.
- Fluids at rest at infinity, (very small) surface tension.

Vincent Duchêne

The system can be rewritten as two coupled evolution equations in

$$\zeta$$
 and $\psi \equiv \phi_{2|\text{interface}}$.

using Dirichlet-Neumann operators.

Vincent Duchêne

Coupled models

Scalar models

Asymptotic models

Asymptotic models are constructed from asymptotic expansions of the Dirichlet-Neumann operators, w. r. t. given dimensionless parameters.

Vincent Duchêne

Coupled models

Scalar models

Asymptotic models : examples

Shallow water : $\mu \ll 1$.

First order : Saint-Venant system

 $\partial_t U + A[\epsilon U] \partial_x U = 0.$

Second order : Green-Naghdi (or Serre) system

 $\partial_t U + A[\epsilon U] \partial_x U + \mu B[\epsilon U, \partial_x] \partial_x U + \mu C[\epsilon U, \partial_x] \partial_t U = 0.$

Long wave : $\mu \ll 1$, $\epsilon = \mathcal{O}(\mu)$.

Boussinesq system :

 $\partial_t U + A_0 \partial_x U + \epsilon A(U) \partial_x U + \mu B \partial_x^3 U + \mu C \partial_x^2 \partial_t U = 0.$

Moderate amplitude regime : $\mu \ll 1$, $\epsilon = \mathcal{O}(\mu^{1/2})$.

Vincent Duchêne

Coupled models

Scalar models

Asymptotic models : remarks

- These models are justified in the sense of consistency.¹
 In order to fully justify these models, one should prove that they are well-posed, and that their solution remains close to the full Euler system.
- These models are not unique! One may derive a family of models, with possibly very different behavior. Typically, when $\mu \ll 1$, one can manipulate the dispersion effects on large wavelength without modifying the precision.
- Then a question is whereas one can select a (class of) model with improved properties, such as
 - optimal frequency dispersion;
 - well-posedness for less regular initial data;
 - well-posedness over larger time.

$1. \ \ \mathsf{Bona-Lannes-Saut} \ '08, \ \mathsf{Anh} \ '09, \ \mathsf{VD-Israwi-Talhouk}$

Vincent Duchêne

Coupled models

Scalar models

Asymptotic models : remarks

- These models are justified in the sense of consistency.¹
 In order to fully justify these models, one should prove that they are well-posed, and that their solution remains close to the full Euler system.
- These models are not unique! One may derive a family of models, with possibly very different behavior. Typically, when $\mu \ll 1$, one can manipulate the dispersion effects on large wavelength without modifying the precision.
- Then a question is whereas one can select a (class of) model with improved properties, such as
 - optimal frequency dispersion ;
 - well-posedness for less regular initial data;
 - well-posedness over larger time.

1. Bona-Lannes-Saut '08, Anh '09, VD-Israwi-Talhouk

Vincent Duchêne

Coupled models

Scalar models

Asymptotic models : remarks

- These models are justified in the sense of consistency.¹
 In order to fully justify these models, one should prove that they are well-posed, and that their solution remains close to the full Euler system.
- These models are not unique! One may derive a family of models, with possibly very different behavior. Typically, when $\mu \ll 1$, one can manipulate the dispersion effects on large wavelength without modifying the precision.
- Then a question is whereas one can select a (class of) model with improved properties, such as
 - optimal frequency dispersion ;
 - well-posedness for less regular initial data;
 - well-posedness over larger time.

1. Bona-Lannes-Saut '08, Anh '09, VD-Israwi-Talhouk

Vincent Duchêne

Coupled models

Scalar models

Asymptotic models : state of the art

Shallow water : $\mu \ll 1$.

First order : Saint-Venant system

 $\partial_t U + A[\epsilon U] \partial_x U = 0.$

Well-posed, $T_{\max} \geq T/\epsilon$, stable. Guyenne-Lannes-Saut '10

Second order : Green-Naghdi (or Serre) system

 $\partial_t U + A[\epsilon U] \partial_x U + \mu B[\epsilon U, \partial_x] \partial_x U = 0.$

(The original is) ill-posed. Liska-Margolin-Wendroff '95, Cotter-Holm-Percival '10

Long wave :
$$\mu \ll 1$$
, $\epsilon = \mathcal{O}(\mu)$.

Boussinesq system :

$$\partial_t U + A_0 \partial_x U + \epsilon A(U) \partial_x U + \mu B \partial_x^3 U + \mu C \partial_x^2 \partial_t U = 0.$$

(Some are) well-posed, $T_{max} \ge T/\epsilon$, stable. Bona-Chen-Saut '04, Saut-Xu '12 ... ~ justification of decoupled KdV approximation. Bona-Colin-Lannes '04, VD'11

Vincent Duchêne

The aim of the talk : construct a well-posed asymptotic model in the moderate amplitude regime, and use it to describe asymptotically the behavior of the flow.

Introduction

- The full Euler system
- Asymptotic models

2 Coupled models

- Construction
- Full justification

3 Scalar models

- Unidirectional approximation
- Decoupled approximation

- The full Euler system
- Asymptotic models

2 Coupled models

- Construction
- Full justification

3 Scalar models

- Unidirectional approximation
- Decoupled approximation

Coupled models

Scalar models

The Green-Naghdi system

The Green-Naghdi system

$$\begin{cases} \partial_t \zeta + \partial_x \left(\frac{h_1 h_2}{h_1 + \gamma h_2} v \right) = 0, \\ \partial_t \left(v + \mu \mathcal{Q}[\zeta] v \right) + (\gamma + \delta) \partial_x \zeta + \frac{\epsilon}{2} \partial_x \left(\frac{h_1^2 - \gamma h_2^2}{(h_1 + \gamma h_2)^2} |v|^2 \right) = \mu \epsilon \partial_x (\mathcal{R}[\zeta, v]), \end{cases}$$
(GN)
with $h_1 = 1 - \epsilon \zeta$ and $h_2 = \frac{1}{\delta} + \epsilon \zeta$ and
$$v \equiv \frac{1}{1 + (\epsilon - \lambda)} \int_{-\epsilon \zeta(t, x)}^{\epsilon \zeta(t, x)} \partial_x \phi_2(t, x, z) \, dz - \gamma \frac{1}{1 + (\epsilon - \lambda)} \int_{-\epsilon \zeta(t, x)}^{1} \partial_x \phi_1(t, x, z) \, dz.$$

$$v \equiv \frac{1}{h_2(t,x)} \int_{-\frac{1}{\delta}}^{\epsilon\zeta(t,x)} \partial_x \phi_2(t,x,z) dz - \gamma \frac{1}{h_1(t,x)} \int_{\epsilon\zeta(t,x)}^{1} \partial_x \phi_1(t,x,z) dz.$$
$$\mathcal{Q}[\zeta] V \equiv \frac{-1}{3h_1h_2} \left(h_1 \partial_x \left(h_2^{-3} \partial_x \left(\frac{h_1 \ V}{h_1 + \gamma h_2} \right) \right) + \gamma h_2 \partial_x \left(h_1^{-3} \partial_x \left(\frac{h_2 \ V}{h_1 + \gamma h_2} \right) \right) \right),$$

$$\mathcal{R}[\zeta, V] \equiv \frac{1}{2} \left(\left(h_2 \partial_x \left(\frac{h_1 V}{h_1 + \gamma h_2} \right) \right)^2 - \gamma \left(h_1 \partial_x \left(\frac{h_2 V}{h_1 + \gamma h_2} \right) \right)^2 \right) \\ + \frac{1}{3} \frac{V}{h_1 + \gamma h_2} \left(\frac{h_1}{h_2} \partial_x \left(h_2^3 \partial_x \left(\frac{h_1 V}{h_1 + \gamma h_2} \right) \right) - \gamma \frac{h_2}{h_1} \partial_x \left(h_1^3 \partial_x \left(\frac{h_2 V}{h_1 + \gamma h_2} \right) \right) \right).$$

Vincent Duchêne

Coupled models ●○○○

Scalar models

The Green-Naghdi system

The Green-Naghdi system

$$\begin{cases} \partial_t \zeta + \partial_x \left(\frac{h_1 h_2}{h_1 + \gamma h_2} v \right) = 0, \\ \partial_t \left(v + \mu \mathcal{Q}[\zeta] v \right) + (\gamma + \delta) \partial_x \zeta + \frac{\epsilon}{2} \partial_x \left(\frac{h_1^2 - \gamma h_2^2}{(h_1 + \gamma h_2)^2} |v|^2 \right) = \mu \epsilon \partial_x \left(\mathcal{R}[\zeta, v] \right), \end{cases}$$
(GN)

with
$$h_1 = 1 - \epsilon \zeta$$
 and $h_2 = \frac{1}{\delta} + \epsilon \zeta$ and
 $v \equiv \frac{1}{h_2(t,x)} \int_{-\frac{1}{\delta}}^{\epsilon \zeta(t,x)} \partial_x \phi_2(t,x,z) dz - \gamma \frac{1}{h_1(t,x)} \int_{\epsilon \zeta(t,x)}^{1} \partial_x \phi_1(t,x,z) dz.$

$$\begin{split} \mathcal{Q}[\zeta] \mathcal{V} &\equiv \frac{-1}{3h_1h_2} \bigg(h_1 \partial_x \Big(h_2^3 \partial_x \big(\frac{h_1 \ V}{h_1 + \gamma h_2} \big) \Big) + \gamma h_2 \partial_x \Big(h_1^3 \partial_x \big(\frac{h_2 \ V}{h_1 + \gamma h_2} \big) \Big) \bigg), \\ \mathcal{R}[\zeta, \mathcal{V}] &\equiv \frac{1}{2} \bigg(\bigg(h_2 \partial_x \big(\frac{h_1 \ V}{h_1 + \gamma h_2} \big) \bigg)^2 - \gamma \Big(h_1 \partial_x \big(\frac{h_2 \ V}{h_1 + \gamma h_2} \big) \Big)^2 \Big) \\ &\quad + \frac{1}{3} \frac{\mathcal{V}}{h_1 + \gamma h_2} \left(\frac{h_1}{h_2} \partial_x \Big(h_2^3 \partial_x \big(\frac{h_1 \ V}{h_1 + \gamma h_2} \big) \Big) - \gamma \frac{h_2}{h_1} \partial_x \Big(h_1^3 \partial_x \big(\frac{h_2 \ V}{h_1 + \gamma h_2} \big) \Big) \bigg). \end{split}$$

Coupled models

Scalar models

The Green-Naghdi system

The Green-Naghdi system

$$\begin{cases} \partial_t \zeta + \partial_x \left(\frac{h_1 h_2}{h_1 + \gamma h_2} v \right) = 0, \\ \partial_t \left(v + \mu \mathcal{Q}[\zeta] v \right) + (\gamma + \delta) \partial_x \zeta + \frac{\epsilon}{2} \partial_x \left(\frac{h_1^2 - \gamma h_2^2}{(h_1 + \gamma h_2)^2} |v|^2 \right) = \mu \epsilon \partial_x \left(\mathcal{R}[\zeta, v] \right), \end{cases}$$
(GN)

Consistency

The full Euler system is consistent with the Green-Naghdi model, with precision $\mathcal{O}(\mu^2)$.

Remarks :

- This extends to 3D case, non-flat topography, surface tension.
- Linearly well-posed. Nonlinear well-posedness is completely open.
- Unconditionally ill-posed in presence of background shear.

Vincent Duchêne

Coupled models ○●○○ Scalar models

Construction of our model

The Serre system

$$\begin{cases} \partial_t \zeta + \partial_x \Big(\frac{h_1 h_2}{h_1 + \gamma h_2} v \Big) = 0, \\ \partial_t \Big(v + \mu \mathcal{Q}[\zeta] v \Big) + (\gamma + \delta) \partial_x \zeta + \frac{\epsilon}{2} \partial_x \Big(\frac{h_1^2 - \gamma h_2^2}{(h_1 + \gamma h_2)^2} |v|^2 \Big) = \mu \epsilon \partial_x \big(\mathcal{R}[\zeta, v] \big), \end{cases}$$
(S)
with $h_1 = 1 - \epsilon \zeta, h_2 = \frac{1}{\delta} + \epsilon \zeta$ and
$$\mathcal{Q}[\zeta] V \equiv -\mathbf{a} \partial_x^2 V + \epsilon \Big(\mathbf{b} \ V \partial_x^2 \zeta + \mathbf{c} \ (\partial_x \zeta) (\partial_x V) + \mathbf{d} \ \partial_x (\zeta \partial_x V) \Big) + \mathcal{O}(\epsilon^2),$$
 $\mathcal{R}[\zeta, V] \equiv \mathbf{e} \ (\partial_x V)^2 + \mathbf{f} \ V \partial_x^2 V + \mathcal{O}(\epsilon). \end{cases}$

Introduce

$$F(\epsilon\zeta, v) = F_0(\epsilon\zeta) + \epsilon^2 F_1(\epsilon\zeta)v^2$$

$$S[\epsilon\zeta]V = (1 + \kappa_1\epsilon\zeta)V - \mu \ a \ \partial_x\Big((1 + \kappa_2\epsilon\zeta)\partial_xV\Big).$$

Fit the parameters, extra manipulations, withdraw $\mathcal{O}(\mu^2 + \mu \epsilon^2)$ terms.

Vincent Duchêne

Coupled models ○●○○ Scalar models

Construction of our model

The Serre system

$$\begin{cases} \partial_t \zeta + \partial_x \left(\frac{h_1 h_2}{h_1 + \gamma h_2} v \right) = 0, \\ \partial_t \left(v + \mu \mathcal{Q}[\zeta] v \right) + (\gamma + \delta) \partial_x \zeta + \frac{\epsilon}{2} \partial_x \left(\frac{h_1^2 - \gamma h_2^2}{(h_1 + \gamma h_2)^2} |v|^2 \right) = \mu \epsilon \partial_x \left(\mathcal{R}[\zeta, v] \right), \end{cases}$$
(S)
with $h_1 = 1 - \epsilon \zeta, h_2 = \frac{1}{\delta} + \epsilon \zeta$ and
$$\mathcal{Q}[\zeta] V \equiv -\mathbf{a} \, \partial_x^2 V + \epsilon \left(\mathbf{b} \, V \partial_x^2 \zeta + \mathbf{c} \, (\partial_x \zeta) (\partial_x V) + \mathbf{d} \, \partial_x (\zeta \partial_x V) \right) + \mathcal{O}(\epsilon^2),$$

$$\mathcal{R}[\zeta, V] \equiv \mathbf{e} \, (\partial_x V)^2 + \mathbf{f} \, V \partial_x^2 V + \mathcal{O}(\epsilon). \end{cases}$$

Introduce

$$F(\epsilon\zeta, v) = F_0(\epsilon\zeta) + \epsilon^2 F_1(\epsilon\zeta)v^2$$

$$S[\epsilon\zeta]V = (1 + \kappa_1\epsilon\zeta)V - \mu \ a \ \partial_x\Big((1 + \kappa_2\epsilon\zeta)\partial_xV\Big).$$

Fit the parameters, extra manipulations, withdraw $\mathcal{O}(\mu^2 + \mu \epsilon^2)$ terms.

Vincent Duchêne

Coupled models

Scalar models

Justification of our model

The modified Serre system

$$\begin{cases} F(\epsilon\zeta, \mathbf{v})\partial_t \zeta + F(\epsilon\zeta, \mathbf{v})\partial_x \Big(\frac{h_1h_2}{h_1 + \gamma h_2}\mathbf{v}\Big) = 0, \\ S[\epsilon\zeta](\partial_t \mathbf{v} + \epsilon\sigma \mathbf{v}\partial_x \mathbf{v}) + (\gamma + \delta)(1 + \kappa_1\epsilon\zeta)\partial_x \zeta + \frac{\epsilon}{2}\partial_x \Big(\Big(\frac{h_1^2 - \gamma h_2^2}{(h_1 + \gamma h_2)^2} - \sigma \Big)|\mathbf{v}|^2 \Big) \\ = \mu\epsilon \varsigma \partial_x \Big((\partial_x \mathbf{v})^2 \Big), \\ \text{with } h_1 = 1 - \epsilon\zeta, \ h_2 = \frac{1}{\delta} + \epsilon\zeta, \text{ and} \\ S[\epsilon\zeta]V = (1 + \kappa_1\epsilon\zeta)V - \mu \ a \ \partial_x \Big((1 + \kappa_2\epsilon\zeta)\partial_x V \Big). \end{cases}$$

Properties of the system.

• Linearly well-posed.

Our manipulations do not modify the dispersion relation ;

- Conditionally $(|\epsilon v_0|^2 < f(\delta, \gamma))$ linearly well-posed in presence of a background shear. The original Serre system was not !
- "Symmetric" + lower order terms

Coupled models

Scalar models

Rigorous justification of the model

Consistency

The full Euler system is consistent with (S'), with precision $\mathcal{O}(\mu^2 + \mu \epsilon^2 + \mu bo^{-1})$.

Well posedness

The new model is well-posed in $X^s \equiv H^s \times H^{s+1}_{\mu}$ (s > 3/2) over times of order $\gtrsim 1/\epsilon$.

Stability

If V satisfies (S') up to $R \in L^1([0, T/\epsilon); X^s)$, then for U_S the solution of (S') with same initial data, one has

$$\forall t \in [0, T/\epsilon], \qquad |V - U_S|_{X^s} \leq C |R|_{L^1([0,t];X^s)}$$

Convergence

The difference between any sufficiently smooth solution U of the full Euler system, and the solution U_S of the new model (S') with corresponding initial data, satisfies

$$\forall t \in [0, T/\epsilon], \qquad \left| U - U_{\mathcal{S}} \right|_{L^{\infty}([0,t];X^{s})} \leq C \left(\mu^{2} + \mu \epsilon^{2} + \mu \mathrm{bo}^{-1} \right) t.$$

Vincent Duchêne

Coupled models

Scalar models

Rigorous justification of the model

Consistency

The full Euler system is consistent with (S'), with precision $\mathcal{O}(\mu^2 + \mu \epsilon^2 + \mu bo^{-1})$.

Well posedness

The new model is well-posed in $X^s \equiv H^s imes H^{s+1}_{\mu}$ (s > 3/2) over times of order $\gtrsim 1/\epsilon$.

Requires the following conditions :

$$h_1 \ge h_0 > 0, \ h_2 \ge h_0 > 0 \qquad \Longrightarrow \frac{1}{h_1 + \gamma h_2} \in H^s$$
 (H1)

$$F(\epsilon\zeta, \nu) \ge h_0 > 0$$
, i.e. $|\epsilon\nu|^2 \le f(\epsilon\zeta)$ (H2)

$$1 + \epsilon \kappa_i \zeta \ge h_0 > 0 \ (i = 1, 2) \implies S$$
 is elliptic. (H3)

This allows to obtain energy estimates in the energy space

$$\left| \left(\zeta, v \right) \right|_{H^{s} \times H^{s+1}_{\mu}}^{2} \; \equiv \; \left| \zeta \right|_{H^{s}}^{2} + \left| v \right|_{H^{s}}^{2} + \mu \left| \partial_{x} v \right|_{H^{s}}^{2}.$$

Stability

Vincent Duchêne. (c) Nonlinear dispersive asymptotics models for the propagation of internal waves (c) 13/21

Coupled models

Scalar models

Rigorous justification of the model

Consistency

The full Euler system is consistent with (S'), with precision $\mathcal{O}(\mu^2 + \mu \epsilon^2 + \mu bo^{-1})$.

Well posedness

The new model is well-posed in $X^s \equiv H^s \times H^{s+1}_{\mu}$ (s > 3/2) over times of order $\gtrsim 1/\epsilon$.

Stability

If V satisfies (S') up to $R \in L^1([0, T/\epsilon); X^s)$, then for U_S the solution of (S') with same initial data, one has

$$\forall t \in [0, T/\epsilon], \qquad |V - U_S|_{X^s} \leq C |R|_{L^1([0,t];X^s)}$$

Convergence

The difference between any sufficiently smooth solution U of the full Euler system, and the solution U_S of the new model (S') with corresponding initial data, satisfies

$$\forall t \in [0, T/\epsilon], \qquad \left| U - U_{\mathcal{S}} \right|_{L^{\infty}([0,t];X^{s})} \leq C \left(\mu^{2} + \mu \epsilon^{2} + \mu \mathrm{bo}^{-1} \right) t.$$

Vincent Duchêne

Coupled models

Scalar models

Rigorous justification of the model

Consistency

The full Euler system is consistent with (S'), with precision $\mathcal{O}(\mu^2 + \mu \epsilon^2 + \mu bo^{-1})$.

Well posedness

The new model is well-posed in $X^s \equiv H^s \times H^{s+1}_{\mu}$ (s > 3/2) over times of order $\gtrsim 1/\epsilon$.

Stability

If V satisfies (S') up to $R \in L^1([0, T/\epsilon); X^s)$, then for U_S the solution of (S') with same initial data, one has

$$\forall t \in [0, T/\epsilon], \qquad |V - U_S|_{X^s} \leq C |R|_{L^1([0,t];X^s)}$$

Convergence

The difference between any sufficiently smooth solution U of the full Euler system, and the solution U_S of the new model (S') with corresponding initial data, satisfies

$$\forall t \in [0, T/\epsilon], \qquad \left| U - U_{\mathcal{S}} \right|_{L^{\infty}([0,t];X^{s})} \leq C \left(\mu^{2} + \mu \epsilon^{2} + \mu \mathrm{bo}^{-1} \right) t.$$

Vincent Duchêne

Coupled models

Scalar models

Rigorous justification of the model

Consistency

The full Euler system is consistent with (S'), with precision $\mathcal{O}(\mu^2 + \mu \epsilon^2 + \mu bo^{-1})$.

Well posedness

The new model is well-posed in $X^s \equiv H^s \times H^{s+1}_{\mu}$ (s > 3/2) over times of order $\gtrsim 1/\epsilon$.

Stability

Convergence

The difference between any sufficiently smooth solution U of the full Euler system, and the solution U_S of the new model (S') with corresponding initial data, satisfies

$$\forall t \in [0, T/\epsilon], \qquad \left| U - U_{\mathcal{S}} \right|_{L^{\infty}([0,t];X^{s})} \leq C \left(\mu^{2} + \mu \epsilon^{2} + \mu \mathrm{bo}^{-1} \right) t.$$

Remarks.

- We do not use $\epsilon \lesssim \mu^{1/2}$.
- The result extends to (small) non-flat topography, (small) surface tension.

- The full Euler system
- Asymptotic models

Coupled models

- Construction
- Full justification

3 Scalar models

- Unidirectional approximation
- Decoupled approximation

Coupled models

Scalar models

The unidirectional model

Seek an approximate solution under the form

 $\begin{aligned} \partial_t \zeta \,+\, \mathbf{a} \,\partial_x \zeta \,+\, \epsilon \,\mathbf{b} \,\zeta \partial_x \zeta \,+\, \mu \,\mathbf{c} \,\partial_x^2 \partial_t \zeta \\ &+\, \epsilon^2 \mathbf{d} \,\zeta^2 \partial_x \zeta \,+\, \epsilon^3 \mathbf{e} \,\zeta^3 \partial_x \zeta \,+\, \mu \epsilon \partial_x \big(\mathbf{f} \,\zeta \partial_x^2 \zeta \,+\, \mathbf{g} \,(\partial_x \zeta)^2\big) \,=\, \mathbf{0} \;, \\ \mathbf{v} \,=\, \mathbf{F}[\zeta] \,=\, \alpha \;\zeta \,+\, \epsilon \;\beta \;\zeta^2 \,+\, \mu \;\boldsymbol{\nu} \;\partial_x^2 \zeta \,+\, \cdots \;, \end{aligned}$

with precision (consistency) $\mathcal{O}(\mu^2 + \epsilon^4)$.

Unidirectional scalar approximation (after Constantin-Lannes '09)

If the initial data satisfies $v(0,x) = F[\zeta(0,x)]$, then let $U_{uni} = (v,\zeta)$ be defined by $v(t,x) = F[\zeta(t,x)]$ and

$$\partial_t \zeta + \partial_x \zeta + \epsilon \frac{3}{2} \frac{\delta^2 - \gamma}{\gamma + \delta} \zeta \partial_x \zeta - \mu \frac{1}{6} \frac{1 + \gamma \delta}{\delta(\gamma + \delta)} \partial_x^2 \partial_t \zeta + \epsilon^2 d \zeta^2 \partial_x \zeta + \epsilon^3 e \zeta^3 \partial_x \zeta + \mu \epsilon \partial_x (f \zeta \partial_x^2 \zeta + g (\partial_x \zeta)^2) = 0.$$

Then U_{uni} is an approximate solution, with accuracy $\mathcal{O}((\mu^2 + \epsilon^4)t)$.

Coupled models

Scalar models

The unidirectional model

Seek an approximate solution under the form

 $\begin{aligned} \partial_t \zeta &+ a \,\partial_x \zeta \,+ \,\epsilon \, b \,\zeta \partial_x \zeta \,+ \,\mu \, c \,\partial_x^2 \partial_t \zeta \\ &+ \,\epsilon^2 d \,\zeta^2 \partial_x \zeta \,+ \,\epsilon^3 e \,\zeta^3 \partial_x \zeta \,+ \,\mu \epsilon \partial_x \big(f \,\zeta \partial_x^2 \zeta \,+ \,g \,(\partial_x \zeta)^2 \big) \,= \,0 \;, \\ \nu &= \, F[\zeta] \,= \,\alpha \,\zeta \,+ \,\epsilon \,\beta \,\zeta^2 \,+ \,\mu \,\nu \,\partial_x^2 \zeta \,+ \,\cdots \;, \end{aligned}$

with precision (consistency) $\mathcal{O}(\mu^2 + \epsilon^4)$.

Unidirectional scalar approximation (after Constantin-Lannes '09) If the initial data satisfies $v(0, x) = F[\zeta(0, x)]$, then let $U_{uni} = (v, \zeta)$ be defined by $v(t, x) = F[\zeta(t, x)]$ and $\partial_t \zeta + \partial_x \zeta + \epsilon \frac{3}{2} \frac{\delta^2 - \gamma}{\gamma + \delta} \zeta \partial_x \zeta - \mu \frac{1}{6} \frac{1 + \gamma \delta}{\delta(\gamma + \delta)} \partial_x^2 \partial_t \zeta$ $+ \epsilon^2 d \zeta^2 \partial_x \zeta + \epsilon^3 e \zeta^3 \partial_x \zeta + \mu \epsilon \partial_x (f \zeta \partial_x^2 \zeta + g (\partial_x \zeta)^2) = 0.$

Then U_{uni} is an approximate solution, with <u>accuracy</u> $\mathcal{O}((\mu^2 + \epsilon^4)t)$.

Coupled models

Scalar models

Decomposition of the flow

Is it true that after a certain time, any perturbation will decompose into two waves, each one satisfying (approximately) $v = F[\zeta]$?

Coupled models

Scalar models

Decomposition of the flow

Is it true that after a certain time, any perturbation will decompose into two waves, each one satisfying (approximately) $v = F[\zeta]$?

Numerically, yes.

Figure : moderate amplitude regime : $\epsilon^2 = \mu$, localized initial data.

Coupled models

Scalar models

Decoupled models : Strategy

Recall the modified Serre system (S') :

$$\begin{aligned} \partial_t \zeta &+ \partial_x \Big(\frac{h_1 h_2}{h_1 + \gamma h_2} v \Big) &= 0, \\ \mathcal{S}[\zeta](\partial_t v + \epsilon \sigma v \partial_x v) + (\gamma + \delta)(1 + \kappa_1 \epsilon \zeta) \partial_x \zeta + \frac{\epsilon}{2} \partial_x \Big(\Big(\frac{h_1^2 - \gamma h_2^2}{(h_1 + \gamma h_2)^2} - \sigma \Big) |v|^2 \Big) \\ &= \mu \epsilon \varsigma \, \partial_x \big((\partial_x v)^2 \big), \end{aligned}$$

• First order : $\partial_t U + \Sigma_0 \partial_x U = 0$ \rightsquigarrow Decomposition of the flow : $U = \sum u_i \mathbf{e}_i, \ \partial_t u_i + c_i \partial_x u_i = 0$

② Second order : WKB-type analysis $U_{app} = \sum u_i(\iota t, t, x)\mathbf{e}_i + \iota U^c[u_i].$ $\iota = \max\{\epsilon(\delta^2 - \gamma), \epsilon^2, \mu\}$ → Equation on u_i , then U^c , for maximal consistency

Ontrol of the secular growth of U^c.
 → Consistency result.

 \rightsquigarrow Convergence result.

Vincent Duchêne

Coupled models

Scalar models

Decoupled models : Strategy

Recall the modified Serre system (S') :

$$\begin{aligned} \partial_t \zeta &+ \partial_x \Big(\frac{h_1 h_2}{h_1 + \gamma h_2} v \Big) &= 0, \\ \mathcal{S}[\zeta](\partial_t v + \epsilon \sigma v \partial_x v) + (\gamma + \delta)(1 + \kappa_1 \epsilon \zeta) \partial_x \zeta + \frac{\epsilon}{2} \partial_x \Big(\Big(\frac{h_1^2 - \gamma h_2^2}{(h_1 + \gamma h_2)^2} - \sigma \Big) |v|^2 \Big) \\ &= \mu \epsilon \varsigma \, \partial_x \big((\partial_x v)^2 \big), \end{aligned}$$

- First order : $\partial_t U + \Sigma_0 \partial_x U = 0$ \rightsquigarrow Decomposition of the flow : $U = \sum u_i \mathbf{e}_i, \ \partial_t u_i + c_i \partial_x u_i = 0$
- ② Second order : WKB-type analysis $U_{app} = \sum u_i(\iota t, t, x)\mathbf{e}_i + \iota U^c[u_i].$ $\iota = \max\{\epsilon(\delta^2 - \gamma), \epsilon^2, \mu\}$ → Equation on u_i , then U^c , for maximal consistency

• Control of the secular growth of U^c .

- \rightsquigarrow Consistency result.
- \rightsquigarrow Convergence result.

Vincent Duchêne

Coupled models

Scalar models

Decoupled models : Strategy

Recall the modified Serre system (S') :

$$\begin{aligned} \partial_t \zeta &+ \partial_x \Big(\frac{h_1 h_2}{h_1 + \gamma h_2} v \Big) &= 0, \\ \mathcal{S}[\zeta](\partial_t v + \epsilon \sigma v \partial_x v) + (\gamma + \delta)(1 + \kappa_1 \epsilon \zeta) \partial_x \zeta + \frac{\epsilon}{2} \partial_x \Big(\Big(\frac{h_1^2 - \gamma h_2^2}{(h_1 + \gamma h_2)^2} - \sigma \Big) |v|^2 \Big) \\ &= \mu \epsilon \varsigma \, \partial_x \big((\partial_x v)^2 \big), \end{aligned}$$

- First order : $\partial_t U + \Sigma_0 \partial_x U = 0$ \rightsquigarrow Decomposition of the flow : $U = \sum u_i \mathbf{e}_i, \ \partial_t u_i + c_i \partial_x u_i = 0$
- ② Second order : WKB-type analysis $U_{app} = \sum u_i(\iota t, t, x)\mathbf{e}_i + \iota U^c[u_i].$ $\iota = \max\{\epsilon(\delta^2 - \gamma), \epsilon^2, \mu\}$ → Equation on u_i , then U^c , for maximal consistency

Sontrol of the secular growth of
$$U^c$$
.
→ Consistency result.

 \rightsquigarrow Convergence result.

Vincent Duchêne

Coupled models

Scalar models

Decoupled models : Strategy

Recall the modified Serre system (S') :

$$\begin{aligned} \partial_t \zeta &+ \partial_x \Big(\frac{h_1 h_2}{h_1 + \gamma h_2} v \Big) &= 0, \\ \mathcal{S}[\zeta](\partial_t v + \epsilon \sigma v \partial_x v) + (\gamma + \delta)(1 + \kappa_1 \epsilon \zeta) \partial_x \zeta + \frac{\epsilon}{2} \partial_x \Big(\Big(\frac{h_1^2 - \gamma h_2^2}{(h_1 + \gamma h_2)^2} - \sigma \Big) |v|^2 \Big) \\ &= \mu \epsilon \varsigma \, \partial_x \big((\partial_x v)^2 \big), \end{aligned}$$

- First order : $\partial_t U + \Sigma_0 \partial_x U = 0$ \rightsquigarrow Decomposition of the flow : $U = \sum u_i \mathbf{e}_i, \ \partial_t u_i + c_i \partial_x u_i = 0$
- ② Second order : WKB-type analysis $U_{app} = \sum u_i(\iota t, t, x)\mathbf{e}_i + \iota U^c[u_i].$ $\iota = \max\{\epsilon(\delta^2 - \gamma), \epsilon^2, \mu\}$ → Equation on u_i , then U^c , for maximal consistency

Solution of the secular growth of U^c .

- $\rightsquigarrow \mbox{Consistency result.}$
- \rightsquigarrow Convergence result.

Vincent Duchêne

Coupled models

Rigorous justification

Scalar models

Well-posedness

Let $U(t = 0) \in H^{s+n}$, s > 1/2. Then there exists a unique strong solution $u_i(\tau, t, x)$, uniformly bounded in $C^1([0, T] \times \mathbb{R}; H^{s+n})$.

The residual U^c is uniquely defined, and $U^c \in C^1([0, T] \times \mathbb{R}; H^s)$.

Secular growth of the residual

 $\forall (\tau,t) \in [0,T] \times \mathbb{R}, \quad \left| U^{c}(\tau,t,\cdot) \right|_{H^{s}} \leq C_{0}\sqrt{t}.$

Moreover, if $(1 + x^2)U(t = 0) \in H^{s+n}$, then one has the uniform estimate

 $\left| U^{c}(\tau,t,\cdot) \right|_{H^{s}} \leq C_{0},$

Consistency

 $\sum_{i} u_i(\iota t, t, x) \mathbf{e}_i + \iota U^c(\iota t, t, x) \text{ satisfies the Serre model (S'), with precision } \mathcal{O}(\iota^2(1+\sqrt{t})) \text{ (and } \mathcal{O}(\iota^2) \text{ if } (1+x^2)U(t=0) \in H^{s+n}), \text{ for } t \in [0, T/\iota].$ (recall : $\iota = \max\{\epsilon(\delta^2 - \gamma), \epsilon^2, \mu\}$).

Coupled models

Scalar models

Rigorous justification

Well-posedness+persistence

Let $U(t = 0) \in H^{s+n}$, s > 1/2. Then there exists a unique strong solution $u_i(\tau, t, x)$, uniformly bounded in $C^1([0, T] \times \mathbb{R}; H^{s+n})$. If $(1 + x^2)U(t = 0, \cdot) \in H^{s+n}$, then $(1 + x^2)u_i(\tau, \cdot) \in H^{s+n}$. The residual U^c is uniquely defined, and $U^c \in C^1([0, T] \times \mathbb{R}; H^s)$.

Secular growth of the residual

 $\forall (\tau, t) \in [0, T] \times \mathbb{R}, \quad \left| U^{c}(\tau, t, \cdot) \right|_{H^{s}} \leq C_{0} \sqrt{t}.$

Moreover, if $(1 + x^2)U(t = 0) \in H^{s+n}$, then one has the uniform estimate

 $\left| U^{c}(\tau,t,\cdot) \right|_{H^{s}} \leq C_{0},$

Consistency

 $\sum_{i} u_i(\iota t, t, x) \mathbf{e}_i + \iota U^c(\iota t, t, x) \text{ satisfies the Serre model (S'), with precision } \mathcal{O}(\iota^2(1+\sqrt{t})) \text{ (and } \mathcal{O}(\iota^2) \text{ if } (1+x^2)U(t=0) \in H^{s+n}), \text{ for } t \in [0, T/\iota].$ (recall : $\iota = \max\{\epsilon(\delta^2 - \gamma), \epsilon^2, \mu\}$).

Coupled models

Scalar models

Rigorous justification

Well-posedness+persistence

Let $U(t = 0) \in H^{s+n}$, s > 1/2. Then there exists a unique strong solution $u_i(\tau, t, x)$, uniformly bounded in $C^1([0, T] \times \mathbb{R}; H^{s+n})$. If $(1 + x^2)U(t = 0, \cdot) \in H^{s+n}$, then $(1 + x^2)u_i(\tau, \cdot) \in H^{s+n}$. The residual U^c is uniquely defined, and $U^c \in C^1([0, T] \times \mathbb{R}; H^s)$.

Secular growth of the residual

 $\forall (\tau, t) \in [0, T] \times \mathbb{R}, \quad \left| U^{c}(\tau, t, \cdot) \right|_{H^{s}} \leq C_{0} \sqrt{t}.$

Moreover, if $(1 + x^2)U(t = 0) \in H^{s+n}$, then one has the uniform estimate

 $\left| U^{c}(\tau,t,\cdot) \right|_{H^{s}} \leq C_{0},$

Consistency

 $\sum_{i} u_i(\iota t, t, x) \mathbf{e}_i + \iota U^c(\iota t, t, x) \text{ satisfies the Serre model (S'), with precision } \mathcal{O}(\iota^2(1+\sqrt{t})) \text{ (and } \mathcal{O}(\iota^2) \text{ if } (1+x^2)U(t=0) \in H^{s+n}), \text{ for } t \in [0, T/\iota].$ (recall : $\iota = \max\{\epsilon(\delta^2 - \gamma), \epsilon^2, \mu\}$).

Coupled models

Rigorous justification

Scalar models

Well-posedness+persistence

Secular growth of the residual

Consistency

$$\begin{split} &\sum u_i(\iota t, t, x) \mathbf{e}_i \ + \iota U^c(\iota t, t, x) \text{ satisfies the Serre model, with precision} \\ &\mathcal{O}\big(\iota^2 \big(1 + \sqrt{t}\big)\big) \ (\text{and} \ \mathcal{O}(\iota^2) \text{ if } (1 + x^2) U(t = 0) \in H^{s+n}). \\ &(\text{recall} : \iota = \max\{\epsilon(\delta^2 - \gamma), \epsilon^2, \mu\}). \end{split}$$

Convergence

The difference between the solution of the full Euler system and the decoupled model for $t \in [0, T/\iota]$ is of size $\mathcal{O}(\iota \times \min\{t, \sqrt{t}\})$, and of size $\mathcal{O}(\iota \times \min\{t, 1\})$ if the initial data is localized in space.

Vincent Duchêne

Coupled models

Scalar models

Error in the moderate amplitude regime

In the non-critical case $\delta^2 - \gamma \neq 0$, the inviscid Burgers' equation is as precise as any higher order decoupled model.

$$\partial_t u_{\pm} \pm \partial_x u_{\pm} \pm \epsilon \frac{3}{2} \frac{\delta^2 - \gamma}{\gamma + \delta} u_{\pm} \partial_x u_{\pm} = 0.$$
 (iB)

Scalar models

Error in the moderate amplitude regime

In the critical case $\delta^2 = \gamma$, if the initial data is localized in space, then (CL) is the most precise decoupled model for very large times

$$\partial_{t} u_{\pm} \pm \partial_{x} u_{\pm} \pm \epsilon \frac{3}{2} \frac{\delta^{2} - \gamma}{\gamma + \delta} u_{\pm} \partial_{x} u_{\pm} - \mu \frac{1}{6} \frac{1 + \gamma \delta}{\delta(\gamma + \delta)} \partial_{x}^{2} \partial_{t} u_{\pm}$$

$$\pm \epsilon^{2} d \ u_{\pm}^{2} \partial_{x} u_{\pm} + \epsilon^{3} e \ u_{\pm}^{3} \partial_{x} u_{\pm} \pm \mu \epsilon \partial_{x} (f \ u_{\pm} \partial_{x}^{2} u_{\pm} + g \ (\partial_{x} u_{\pm})^{2})$$

$$= 0. \quad (CL)$$

Thank you for your attention !

Vincent Duchêne