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Mihai MARIŞ Institut de Mathématiques de Toulouse On some minimization problems arising in the theory of solitary waves



Introduction

In many cases, the important special solutions (such as solitary waves,

standing waves, stationary solutions) of nonlinear dispersive PDE are

obtained as solutions of a minimization problem of the form

(Pλ) minimize E (u) under the constraint Q(u) = λ = constant,

where E = ”energy” and Q = ”charge,” ”mass,” ”momentum,” etc.

Moreover, if E and Q are conserved quantities for the evolution

equation and any minimizing sequence for the problem (Pλ) has a

convergent subsequence, by a well-known result of Cazenave and

Lions it follows that the set of solutions of (Pλ) is orbitally stable.
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Introduction

The aim of this talk is:

• to discuss a general method to prove the precompactness of

minimizing sequences

• to present some applications to travelling waves for NLS with

nonzero conditions at infinity.
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Existence of minimizers

We consider the problem

(Pλ)
Minimize E (u) =

∫
RN

F (u(x),∇u(x)) dx

under the constraint Q(u) =

∫
RN

G (u(x),∇u(x)) dx = λ,

where u : RN −→ Rm belongs to some function space X .

Notation: Emin(λ) = inf{E (u) | u ∈ X ,Q(u) = λ}.

Aim: Prove the (pre)compactness of minimizing sequences for (Pλ):

any sequence (un)n≥1 ⊂ X such that Q(un) = λ and

E (un) −→ Emin(λ) has a convergent subsequence.

Tool: Concentration-compactness method (P.-L. Lions, 1984).
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Concentration-Compactness Principle

CC Lemma. (P.-L. Lions) Let (fn)n≥1 ⊂ L1(RN) be a sequence of

nonnegative functions such that∫
RN

fn dx −→ α0 > 0 as n −→∞.

There is a subsequence (fnk )k≥1 that satisfies one (and only one) of

the following properties:

1. Compactness: There is (yk)k≥1 ⊂ RN such that for any ε > 0

there is Rε <∞ satisfying∫
B(yk ,Rε)

fnk dx ≥ α0 − ε, ∀n ≥ nε.
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Concentration-Compactness Principle

2. Vanishing: For any R <∞ we have

lim
k→∞

(
sup
y∈RN

∫
B(y ,R)

fnk dx

)
= 0.

3. Dichotomy: There is α ∈ (0, α0) and there are nonnegative

functions fk,1, fk,2 ∈ L1(RN) such that∫
RN

|fnk − fk,1 − fk,2| dx −→ 0,∫
RN

fk,1 dx −→ α et

∫
RN

fk,2 dx −→ α0 − α,

dist(supp(fk,1), supp(fk,2)) −→∞ as k −→∞.

In applications, one wants to rule out vanishing and dichotomy.
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How to rule out vanishing ?

Lieb’s Lemma Let u ∈ L1
loc(RN) be such that ∇u ∈ Lp(RN) and

‖∇u‖Lp ≤ C . Assume that meas({x | |u(x)| ≥ ε}) ≥ δ > 0. There is

a constant α = α(N, p,C , δ, ε) and there is x0 ∈ RN such that

meas({x ∈ B(x0, 1) | |u(x)| ≥ ε/2}) ≥ α.

Lions’ Lemma Let 1 < p ≤ ∞, 1 ≤ q <∞, p∗ = pN
N−p if p < N,

p∗ =∞ if p ≥ N. If p < N, we also assume q 6= p∗.

Assume that (un)n≥1 is bounded in Lq(RN) and (|∇un|)n≥1 is

bounded in Lp(RN). If there is R > 0 such that

lim
n→∞

(
sup
y∈RN

∫
B(y ,R)

|un|q dx

)
= 0

then un −→ 0 in Lr (RN) for any r ∈ (min(q, p∗),max(q, p∗)).
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How to rule out vanishing ?

Remark. In the particular case when E (u) =

∫
RN

|∇u|2 + F (u) dx

and Q(u) =

∫
RN

G (u) dx , O. Lopes (’97) gave necessary and sufficient

conditions for the existence of vanishing minimizing sequences.
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How to rule out dichotomy?

Remarks (P.-L. Lions)

a) The function Emin is subadditive:

Emin(a + b) ≤ Emin(a) + Emin(b).

Proof. Let ε > 0. Consider u and v with compact support such that

Q(u) = a, E (u) ≤ Emin(a) + ε
2 , Q(v) = b, E (v) ≤ Emin(b) + ε

2 . Let x

be such that the supports of u and v(x + ·) are disjoint. Then

Q(u + v(x + ·)) = a + b and E (u + v(x + ·)) ≤ Emin(a) +Emin(b) + ε.

b) Dichotomy cannot occur for any minimizing sequence of (Pλ) iff

Emin is strictly subadditive at level λ:

∀α < λ, Emin(λ) < Emin(α) + Emin(λ− α).
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How to rule out dichotomy?

Except some cases where the functionals are homogeneous, it is

difficult to compute Emin or to prove directly the strict subadditivity

(cf. P.-L. Lions, On some minimization problems in Mathematical

Physics: how to check strict subadditivity conditions, 1989).

O. Lopes (’91-’00) proposed an alternative method to prove the

compactness of minimizing sequences for some classes of problems.

This method

• is less general than concentration-compactness

• requires C 2 regularity of all involved functionals,

but

• does not require to check directly the strict subadditivity condition.
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How to rule out dichotomy?

Notation: Π = affine hyperplane in RN

Π+,Π− = the two half-spaces generated by Π

sΠ = symmetry with respect to Π

u = function defined on RN

uΠ+(x) =

{
u(x) if x ∈ Π+ ∪ Π

u(sΠ(x)) if x ∈ Π−,

uΠ−(x) =

{
u(sΠ(x)) if x ∈ Π+

u(x) if x ∈ Π− ∪ Π.
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How to rule out dichotomy?

Proposition 1 (M.) Assume that:

I limλ→0 Emin(λ) = Emin(0) = 0.

I Functions with compact support are dense in X .

I For any v ∈ X and any hyperplane Π we have vΠ+ , vΠ− ∈ X .

I F and G are symmetric with respect to one direction in RN , for

instance F (u, ξ1, . . . ,−ξN) = F (u, ξ1, . . . , ξN) and

G (u, ξ1, . . . ,−ξN) = G (u, ξ1, . . . , ξN).

Then:

a) Emin is concave.

b) If Emin is not strictly subadditive at level λ0 > 0, then Emin is linear

on [0, λ0] and there exists a vanishing minimizing sequence for (Pλ0).
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How to rule out dichotomy?

Proof. a) Let a < b. Fix ε > 0. Take u ∈ X such that Q(u) = a+b
2

and E (u) ≤ Emin(a+b
2 ) + ε. Choose t such that∫

{xN<t}
G (u,∇u) dx =

a

2
and

∫
{xN≥t}

G (u,∇u) dx =
b

2
.

Let u1(x) =

{
u(x) if xN ≤ t

u(x1, . . . , 2t − xN) if xN > t,

u2(x) =

{
u(x1, . . . , 2t − xN) if xN < t

u(x) if xN ≥ t.

Then Q(u1) = a, Q(u2) = b and

Emin(a) + Emin(b) ≤ E (u1) + E (u2) = 2E (u) ≤ 2Emin(a+b
2 ) + 2ε.

Since ε is arbitrary ⇒ Emin(a+b
2 ) ≥ 1

2 (Emin(a) + Emin(b)).

Emin is also subadditive and right continuous at 0 ⇒ Emin is concave.
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How to rule out dichotomy?

b) If there is α ∈]0, λ0[ such that Emin(λ0) = Emin(α) + Emin(λ0 − α),

the concavity of Emin implies that it is linear on [0, λ0].

Let n ∈ N∗. Let vn ∈ X be a function with compact support such that

Q(vn) = λ0
n and E (vn) ≤ Emin(λ0

n ) + 1
n2 = 1

nEmin(λ0) + 1
n2 .

Choose x1, . . . xn ∈ RN ”far away from each other,” such that the

supports of vn(·+ xj) et vn(·+ xk) are disjoint for j 6= k . Let

un = vn(·+ x1) + · · ·+ vn(·+ xn).

Then Q(un) = nQ(vn) = λ0, E (un) = nE (vn) ≤ Emin(λ0) + 1
n and

(un)n≥1 is a vanishing minimizing sequence. QED
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Are there minimizers if Emin is linear?

Proposition 2

a) The same hypothesis as in the previous Proposition. Moreover, we

assume that any minimizer of (Pλ) is C 1. If Emin is linear on [0, λ0],

then for any λ ∈]0, λ0], the problem (Pλ) does not admit minimizers.

b) Assume, in addition, that F and G present a bidimensional

symmetry. If Emin is affine on ]a, b[, where a > 0, then for any

λ ∈]a, b[, (Pλ) does not admit minimizers.
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What about vanishing?

Remark. We make the same assumptions as in Proposition 1.

Moreover, we assume that:

I If (un)n≥1 is a minimizing sequence and the sequences

(xn) ⊂ RN , Rn −→∞ and hn −→∞ are such that∫
B(xn,Rn+hn)\B(xn,Rn)

F (un,∇un) dx −→ 0,

than there are vn,wn ∈ X such that vn = un on B(xn,Rn),

wn = un on RN \ B(xn,Rn + hn) and

E (un)− E (vn)− E (wn) −→ 0,

Q(un)− Q(vn)− Q(wn) −→ 0.

Then vanishing may occur for a minimizing sequence of (Pλ) iff Emin

is linear on [0, λ].
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Some qualitative properties

Theorem (M. 07) Assume that:

I F and G have a common symmetry (at least bidimensional).

I For any v ∈ X and any hyperplane Π we have vΠ+ , vΠ− ∈ X .

I (Pλ) admits minimizers and any minimizer is C 1.

Then, after a translation, any minimizer has the same symmetry as F

and G .

In particular, if F and G depend only on u and |ξ|, any minimizer is

radially symmetric (after a translation in RN).
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Travelling waves for NLS

We consider the nonlinear Schrödinger equation

(NLS) i
∂Φ

∂t
+ ∆Φ + F (|Φ|2)Φ = 0 in RN ,

together with the ”boundary condition”

|Φ| −→ r0 > 0 as |x | −→ ∞,

where F (r2
0 ) = 0 and F ′(r2

0 ) < 0.

Important particular cases:

• The Gross-Pitaevskii equation: F (s) = 1− s,

• The ”cubic-quintic” NLS:

F (s) = −α1 + α3s − α5s
2,

where α1, α3, α5 > 0 and F has 2 positive roots.
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Motivation

Eq. (1), with the considered boundary conditions at infinity, arises in

the modeling of a a large variety of physical phenomena, such as:

- nonlinear optics - dark solitons

- superconductivity,

- superfluidity in Helium II,

- Bose-Einstein condensate,

- phase transitions...
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Hamiltonian structure

Eq. (NLS) is Hamiltonian, the conserved energy is

E (Φ) =

∫
RN

|∇Φ|2 dx +

∫
RN

V (|Φ|2) dx ,

where V (s) =
∫ r2

0
s F (τ) dτ .

Another important conserved quantity for Eq. (NLS) is the

momentum

P(Φ) = (P1(Φ), . . . ,PN(Φ)).

Formally we have

Pk(Φ) =

∫
RN

〈i ∂Φ

∂xk
,Φ〉 dx .
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The energy space

Denoting a =
√
−1

2F
′(r2

0 ) > 0, we have the expansion

V (s) = a2(s − r2
0 )2 + o((s − r2

0 )2) as s −→ r2
0 .

Take a nondecreasing cut-off function ϕ ∈ C∞([0,∞)) such that

ϕ(s) = s for s ∈ [0, 2r0], ϕ = constant near infinity.

The following Ginzburg-Landau energy is relevant for (NLS):

EGL(Φ) =

∫
RN

|∇Φ|2 dx + a2

∫
RN

(ϕ(|Φ|)2 − r2
0 )2dx .

The function space naturally associated to (NLS) is

E = {ψ ∈ H1
loc(RN) | ∇ψ ∈ L2(RN), ϕ(|ψ|)2 − r2

0 ∈ L2(RN)}.

The sound velocity associated to (NLS) is vs = 2ar0.
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The momentum

The momentum (with respect to x1) is a functional Q such that

Q ′(ψ) = 2iψx1 .

• If ψ = r0+u ∈ r0+H1(RN), we should have Q(ψ) =
∫
RN 〈iux1 , u〉 dx .

• If ψ ∈ E has a lifting ψ = ρe iθ, we have (formally)

Q(ψ) = −
∫
RN

ρ2θx1 dx = −
∫
RN

(ρ2 − r2
0 )θx1 dx .

If N ≥ 2, one can prove that for any ψ ∈ E we have

〈iψx1 , ψ〉 ∈ L1(RN) + ∂1Ḣ
1(RN). Let L(v + ∂1w) =

∫
RN

v dx for

v ∈ L1(RN) and w ∈ Ḣ1(RN). Then L is well-defined and is a linear

form on L1(RN) + ∂1Ḣ
1(RN). This enables us to define

Q(ψ) = L(〈iψx1 , ψ〉) ∀ψ ∈ E .

One then easily checks that Q has all expected properties.
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The Cauchy Problem

• F. Béthuel - J.-C. Saut ’99:

Global well-posedness in r0 + H1(RN), N = 1, 2, 3.

• C. Gallo ’05:

Global well-posedness in Zhidkov spaces X k(RN).

• P. Gérard ’06:

Global well-posedness in the energy space E for N = 1, 2, 3 as well as

for N = 4 and initial data with small energy.

Aim: Understand the long-time dynamics associated to (NLS).

The first step in this direction is to understand the special solutions

and the behavior of solutions with initial data close to the special

solutions.
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Travelling waves

Travelling waves of speed c are special solutions of the form

Φ(x , t) = ψ(x1 − ct, x2, . . . , xN). They satisfy the equation

−icψx1 + ∆ψ + F (|ψ|2)ψ = 0 in RN .

These solutions are supposed to play an important role in the

long-time dynamics of (1).

Travelling waves also model various phenomena observed in Helium II

such as vortices, sound waves, etc.

The existence and the qualitative properties of travelling-waves have

been extensively studied numerically in the physical literature and

more recently at a rigorous level.

Formally, a travelling wave of speed c is a critical point of E − cQ.

Mihai MARIŞ On some minimization problems



Minimizing the energy at fixed momentum

Consider the problem

(Pp) minimize E (ψ) in the set {ψ ∈ E | Q(ψ) = p}.

Let Emin(p) = inf{E (ψ) | ψ ∈ E ,Q(ψ) = p}.
If V is negative somewhere, it can be proved that for any p we have

Emin(p) = −∞. From now on we assume that V ≥ 0 on [0,∞).

Clearly, any minimizer ψ of (Pp) satisfies an equation

E ′(ψ)− c(ψ)Q ′(ψ) = 0 ⇒ ψ is a t.w. of speed c(ψ).
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Previous results

For the Gross-Pitaevskii equation (F (s) = 1− s), the existence of

minimizers of (Pp) (but not the compactness of all minimizing

sequences!) has been proved by F. Béthuel, P. Gravejat and J.-C.

Saut (2007).

• N = 2: Emin is strictly concave on (0,∞) and (Pp) admits a

minimizer ψp for any p > 0.

• N = 3: Emin(p) = vsp for p ∈ (0, p0], Emin is strictly concave on

(p0,∞) and (Pp) admits a minimizer ψp for any p > p0.

Moreover,
dE+

min
dp (p) ≤ c(ψp) ≤ dE−min

dp (p) and limp→∞ c(ψp) = 0 ,

limp→0 c(ψp) = vs if N = 2, respectively

limp→p0 c(ψp) = ccr < vs if N = 3.
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Main results

We consider the following assumptions:

A1. F ∈ C ([0,∞[), F is C 1 near r2
0 , F (r2

0 ) = 0 and F ′(r2
0 ) < 0,

A2. There exist q < 2
N−2 (q <∞ if N = 2) and C > 0 such that

|F (s)| ≤ Csq for s ≥ 2r2
0 .

Theorem (M. - D. Chiron ’10) Assume A1, A2 and V ≥ 0. Then:

a) If N = 2, the function Emin is positive, strictly concave and

increasing on (0,∞) and Emin(p) < vsp for any p > 0.

b) If N ≥ 3, there is p0 > 0 such that Emin(p) = vsp on [0, p0],

Emin(p) < vsp and Emin is strictly concave and increasing on (p0,∞).

• If Emin(p) < vsp, any sequence (ψn)n≥1 ⊂ E such that Q(ψn) −→ p

and E (ψn) −→ Emin(p) has a convergent subsequence.

• If Emin(p) = vsp, the problem (Pp) has no solution.
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Main results

Corollary Let Sp = {ψ ∈ E | Q(ψ) = p,E (ψ) = Emin(p)}.
For any p > p0 (with p0 = 0 if N = 2) the set Sp is not empty, any

ψp ∈ Sp of it is a travelling wave of speed c(ψp) ∈ [
dE+

min
dp (p),

dE−min
dp (p)]

and Sp is orbitally stable under the flow of (NLS).

Moreover, limp→∞ c(ψp) = 0 ,

limp→0 c(ψp) = vs if N = 2, respectively

limp→p0 c(ψp) = ccr < vs if N ≥ 3.
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Sketch of the proof

Step 0. One can estimate E (ψ) in terms of EGL(ψ) and conversely.

Let (ψn)n≥1 ⊂ E be such that Q(ψn) −→ p and E (ψn) −→ Emin(p).

Then EGL(ψn) is bounded and passing to a subsequence, we may

assume that

EGL(ψn) −→ α0 > 0 as n −→∞.

We use the concentration-compactness principle for the functions

en = |∇ψn|2 + a2(ϕ(|ψn|2)− r2
0 )2 ∈ L1(RN).

Mihai MARIŞ On some minimization problems



Sketch of the proof

Step 1. Using appropriate test functions we find:

I 0 ≤ Emin(p) ≤ vsp.

Then abstract theory ⇒ Emin is concave on [0,∞).

I Emin(p) < vsp for any p > 0 if N = 2.

I limp−→∞
Emin(p)

p = 0.

Let p0 = inf{p > 0 | Emin(p) < vsp}.
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Sketch of the proof

Step 2. Let ψ ∈ E such that r0 − δ ≤ |ψ| ≤ r0 + δ, with δ > 0 small.

We have a lifting ψ = ρe iθ, where r0 − δ < ρ(x) < r0 + δ and:

|∇ψ|2 = |∇ρ|2 + ρ2|∇θ|2, Q(ψ) = −
∫
RN

(ρ2 − r2
0 )θx1 dx ,

V (|ψ|2) = V (ρ2) ∼ a2(ρ2 − r2
0 )2 ≥ (1− ε)a2(ρ2 − r2

0 )2.

Let η > 0. Since vs = 2ar0, we may choose δ, ε > 0 s.t.

vs − η < 2(1− 2ε)a(r0 − δ). Then

E (ψ)− εEGL(ψ)− (vs − η)|Q(ψ)| ≥ (1− ε)

∫
RN

|∇ρ|2 + ρ2|∇θ|2 dx

−(vs − η)

∫
RN

∣∣(ρ2 − r2
0 )θx1

∣∣ dx + (1− 2ε)a2

∫
RN

(ρ2 − r2
0 )2 dx

≥
∫
RN

(1− ε)(r0 − δ)2|θx1 |2 − (vs − η)
∣∣(ρ2 − r2

0 )θx1

∣∣+ (1− 2ε)a2(ρ2 − r2
0 )2 dx

≥ 0 because a2 − 2|ab|+ b2 ≥ 0!
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Sketch of the proof

We proved that E (ψ)− (vs − η)|Q(ψ)| ≥ εEGL(u) > 0 if |ψ| is

sufficiently close to r0.

Aim: Prove a similar estimate for any ψ ∈ E such that EGL(ψ) is

sufficiently small.
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A regularization procedure

Aim: Get rid of small-scale topological defects of functions.

Let ψ ∈ E , h > 0 and Ω ⊂ RN . We consider the functional

Gψ
h,Ω(ζ) = EΩ

GL(ζ) +
1

h2

∫
Ω
ϕ

(
|ζ − ψ|2

32r0

)
dx .

We show that Gψ
h,Ω has minimizers in the set

{ζ ∈ E | ζ = ψ in RN \ Ω, ζ − ψ ∈ H1
0 (Ω)}.

These minimizers ζh have remarkable properties, for instance:

• ||ζh − ψ||L2(RN) −→ 0 as h −→ 0,

• If ω ⊂⊂ Ω we can estimate || |ζh| − r0 ||L∞(ω) in terms of h and

EΩ
GL(ψ). More precisely, || |ζh| − r0 ||L∞(ω) is arbitrarily small if

EΩ
GL(ψ) is sufficiently small.
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Sketch of the proof

Using the regularization procedure, we prove

Lemma 1. Let 0 < η < vs . For any ε ∈ (0, ηvs ) there is K > 0 such

that for any ψ ∈ E with EGL(ψ) < K we have

E (ψ)− (vs − η)|Q(ψ)| > εEGL(ψ).

Corollary. Let η > 0. There is pη > 0 such that

Emin(p) > (vs − η)p for any p ∈ (0, pη).
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Sketch of the proof

Step 3. Rule out vanishing. Argue by contradiction and assume that

(Van) lim
n→∞

sup
y∈RN

E
B(y ,1)
GL (ψn) = 0.

Lemma 2. If EGL(ψn) is bounded and (ψn) satisfies (Van), then

lim
n→∞

∫
RN

|V (|ψn|2)− a2(ϕ2(|ψn|)− r2
0 )2| dx = 0.

The proof uses Lieb’s Lemma.

Lemma 3. Assume that EGL(ψn) is bounded and (ψn) satisfies (Van).

There is a sequence hn −→ 0 such that for any minimizer ζn of Gψn

hn,RN

in H1
ψn

(RN) we have ‖|ζn| − r0‖L∞(RN) −→ 0 as n −→∞.

The proof of Lemma 3 is difficult.
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Sketch of the proof

Let hn and ζn be as in Lemma 3. Let δn = ‖|ζn| − r0‖L∞(RN) −→ 0.

Then EGL(ζn) ≥ 2a(r0 − δn)|Q(ζn)|.
It is easy to prove that |Q(ψn)− Q(ζn)| −→ 0, hence Q(ζn) −→ p.

We have:

E (ψn) = EGL(ψn) +

∫
RN

V (|ψn|2)− a2(ϕ2(|ψn|)− r0)2 dx

≥ EGL(ζn) +

∫
RN

V (|ψn|2)− a2(ϕ2(|ψn|)− r0)2 dx

≥ 2a(r0 − δn)|Q(ζn)|+
∫
RN

V (|ψn|2)− a2(ϕ2(|ψn|)− r0)2 dx .

Passing to the limit in the above inequality we get

lim inf
n→∞

E (ψn) ≥ 2ar0p = vsp,

a contradiction. This rules out vanishing.
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Sketch of the proof

Step 4. Eliminate the dichotomy.

Assume that dichotomy holds for a subsequence (still denoted (ψn)).

Using the regularization procedure we show that there are two

functions ψn,1, ψn,2 such that

EGL(ψn,1) −→ α and EGL(ψn,2) −→ α0 − α,

|E (ψn)− E (ψn,1)− E (ψn,2)| −→ 0,

|Q(ψn)− Q(ψn,1)− Q(ψn,2)| −→ 0 as n −→∞.

It is easy to see that (Q(ψn,i ))n≥1 are bounded, i = 1, 2. Passing

again to a subsequence, we may assume that

Q(ψn,1) −→ p1 and Q(ψn,2) −→ p2 where p1 + p2 = p.
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Sketch of the proof

It is easy to see that pi ∈ (0, p), i = 1, 2. Now abstract theory (Emin

concave) ⇒ Emin is linear on [0, p], say Emin(s) = κs. We know that

κ ≤ vs . Lemma 1 implies κ > vs − η for any η > 0, thus κ = vs and

Emin(p) = vsp, a contradiction.

Hence dichotomy cannot occur.
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Sketch of the proof

Step 5. Conclusion.

Vanishing and dichotomy are excluded, thus we have compactness:

there exists a sequence (xn)n≥1 ⊂ RN such that, denoting

ψ̃n = ψn(·+ xn), we have:

for all ε > 0, there exists Rε > 0 and nε ∈ N∗ such that

E
RN\B(0,Rε)
GL (ψ̃n) < ε for any n ≥ nε.

We prove that there is a subsequence (ψ̃nk )k≥1 and ψ ∈ E such that

∇ψ̃nk −→ ∇ψ
ϕ2(|ψ̃nk |)− r2

0 −→ ϕ2(|ψ|)− r2
0

in L2(RN).

Then we prove that Q(ψ) = p and E (ψ) = Emin(p), hence ψ solves

(Pp).
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Sketch of the proof

It is standard (Implicit Function Theorem) to prove that any

minimizer of (Pp) satisfies an Euler-Lagrange equation

E ′(ψp)− c(ψp)Q ′(ψp) = 0 in D′(RN),

where c(ψp) ∈ [
dE+

min
dp (p),

dE−min
dp (p)].

Elliptic regularity ⇒ ψp ∈W 2,q
loc (RN) and

∇u ∈W 1,q(RN), ∀q ∈ [2,∞[.

(If F ∈ C k , then ψp ∈W k+2,q
loc (RN) and

∇u ∈W k+1,q(RN), ∀q ∈ [2,∞[.)

Symmetry theory ⇒ ψp is symmetric with respect to Ox1 if N ≥ 3.

If N ≥ 3 we prove that (NLS) does not admit small energy travelling

waves ⇒ p0 > 0. QED
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Open problems

Let p > p0. Let pn ↑ p and let ψpn be a minimizer of (Ppn). Then

(ψpn)n≥1 is a minimizing sequence for (Pp), hence it converges to a

minimizer ψp,1 of (Pp).

It can be proved that c(ψp,1) = limn→∞ c(ψpn) =
dE−min
dp (p).

Similarly, there is a minimizer ψp,2 of (Pp) such that

c(ψp,2) =
dE+

min
dp (p).

Problem. a) Is it true that Emin is differentiable at any point p > p0?

b) Is it true that Sp (= the set of solutions of (Pp)) is, in some sense,

connected?

A positive answer to this question would imply that for any speed

c ∈ (0, ccr ) (where ccr =
dE+

min
dp (p0)) there are travelling waves for

(NLS) that minimize the energy at fixed momentum.
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Open problems

Assume that F and V satisfy assumptions A1, A2, V ≥ 0 on [0,∞)

and there is some s0 far away from r0 such that V (s0) = 0.

Let F̃ and Ṽ be such that F = F̃ and V = Ṽ except on a small

neighborhood of s0, ‖F − F̃‖L∞ and ‖V − Ṽ ‖L∞ are small, but Ṽ

achieves negative values.

Let Ẽ (ψ) =

∫
RN

|∇ψ|2 dx +

∫
RN

Ṽ (|ψ|2) dx .

It is easy to prove that

Ẽmin(p) = inf{Ẽ (ψ) | ψ ∈ E ,Q(ψ) = p} = −∞ for any p.

Problem. a) Is there an open set O ⊂ E such that Ẽ admits

minimizers in {ψ ∈ O | Q(ψ) = p}?
b) Is the answer to the above question affirmative for any F and V

satisfying A1 and A2?
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Open problems

Notice that if F and V satisfy A1 and A2 and N ≥ 3, it has been

proved that for any c ∈ (0, vs), (NLS) admits travelling waves of

speed c that minimize the action E − cQ under a Pohozaev constraint.
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Thank you very much for your attention!
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