Most convergence results for adaptive finite elements rely on

- **Energy minimization**
 - symmetric elliptic operators
 - p-Laplacian
 - obstacle problems
 - convex minimization

Can be relaxed to disturbed Galerkin Orthogonality.

- **Special properties** of the estimators
 - Discrete local lower bound

- **Dörfler marking**: Given $\theta \in (0, 1]$

 Select $M \subseteq T : \quad \theta E_T(T) \leq E_T(M)$

- **Special refinement** of selected elements.

Optimality up to now only for symmetric elliptic operators.
Motivation

Setting of the Basic Convergence Result

Formulation of only few and basic assumptions that lead to convergence. These assumptions should be “necessary” – at least reasonable – and “easy to verify” for many problems.

Main Focus in this Talk: Discrete Lower Bound

Previous convergence proofs rely on a discrete local lower bound:
- Discrete lower bounds may be more difficult to obtain than continuous ones;
- For more complex problems estimators may not be efficient, but still we may want to prove convergence.

Reliability of an estimator should be the key property for convergence. Overestimation should not forestall convergence:
- Overestimation is a problem for efficiently stopping;
- Overestimation is a problem for optimal complexity.

Problem

Variational formulation of a linear, elliptic PDE in a domain $\Omega \subset \mathbb{R}^d$: $u \in V : B[u,v] = (f,v) \quad \forall v \in V,$ \quad \text{(P)}

where
- V is a real Hilbert space with inner product $(\cdot, \cdot)_V$, induced norm $\| \cdot \|_V$;
- $B : V \times V \to \mathbb{R}$ is a continuous bilinear form;
- $f \in V^*$.

Theorem (Nirenberg, Nečas, Babuška, Brezzi)

Problem (P) admits for any $f \in V^*$ a unique solution, if and only if B fulfills an inf-sup condition.

- Coercive forms B satisfy the inf-sup condition:
 $B[v,v] \geq c_B \|v\|^2_V \quad \forall v \in V.$

Examples

Example (Poisson Problem in \mathbb{R}^d)

\[-\Delta u = f \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \partial \Omega. \]

Variational formulation in $V = H^1_0(\Omega)$:

\[
B[u,v] = \int_\Omega \nabla u \cdot \nabla v \, dx = \int_\Omega f v \, dx.
\]

- B is continuous and coercive.
- Discretization with continuous Lagrange elements of order $p \geq 1$.
- Global upper bound for the residual estimator build from
 \[E_T(T) := h_T^2 \| -\Delta U_T - f \|_T^2 + h_T \| [U_T] \|_{L^2(\partial T)}^2. \]
- Continuous and discrete local lower bounds.

Continuous Local Lower Bound

\[E_T(T) \lesssim \| U_T - u \|_{V(\omega(T))} + \text{osc}_T(\omega(T)) \]

with $\text{osc}_T(\omega(T)) = h_T \| f - f_T \|_{L^2(T)}$.

Principal idea by Verfürth: Construct $\phi_T \in V$ with $\| \phi_T \|_V = 1$, supp $\phi_T \subset \omega(T)$ such that

\[E_T(T) \lesssim \langle \mathcal{R}(U_T), \phi_T \rangle := B[U_T - u, \phi_T] \leq \| B \| \| U_T - u \|_{V(\omega(T))} \]

Construction of ϕ_T

- Changing to a computable error indicator leads to potential overestimation.
 - Projection to a finite dimensional space; leads to oscillation.
- Localization by a suitable continuous cut-off function λ_T.
Discrete Local Lower Bound

Let \(T' \) be a refinement of \(T \) with sufficient refinement around \(T \in T \)

\[
\mathcal{E}_T(T) \lesssim \| U_T - U_{T'} \|_{\omega(T)} + \omega_T(\omega(T))
\]

with \(\omega_T(T) = h_T \| f - f_T \|_{2;T} \).

Principal idea by Dörfler and Morin, Nochetto, S.: Construct \(\Phi_T \in \mathbb{V}(T') \)
with \(\| \Phi_T \|_{\mathbb{V}} = 1 \), supp \(\Phi_T \subset \omega(T) \) such that

\[
\mathcal{E}_T(T) \lesssim \langle R(\mathcal{R}(T)), \Phi_T \rangle = B[U_T - U_{T'}, \Phi_T] \leq \| B \| \| U_T - U_{T'} \|_{\omega(T)}
\]

Construction of \(\Phi_T \)

- Projection to a finite dimensional space; leads to oscillation.
- Localization by a suitable discrete cut-off function \(\Lambda_T \).
- Projection is limited by the degree of the FE space and the discrete cut-off function.
- Utilizing a discrete cut-off function is not always possible: A localized function has to be contructed explicetely.

Example (Eddy Current Equations in \(\mathbb{R}^3 \))

\[
\text{curl} \text{curl} \ u + u = f \quad \text{in} \ \Omega, \quad u \wedge n = 0 \quad \text{on} \ \partial \Omega.
\]

Variational formulation in \(\mathbb{V} = H_0(\text{curl}; \Omega) \):

\[
\mathcal{B}[u, v] := \int_{\Omega} \text{curl} \ u \cdot \text{curl} \ v \ dx = \langle f, v \rangle \quad \forall v \in \mathbb{V}
\]

- \(\mathcal{B} \) is continuous and coercive;
- Discretization by Nedelec Elements of any order \(p \);
- Global upper bound for any order;
- Continuous local lower bound for any order;
- Discrete local lower bound available only for lowest order, i.e., for the Whitney Elements.

Example (H(div; \(\Omega \)) Elliptic Operator in \(\mathbb{R}^d \), \(d = 2, 3 \))

\[
- \nabla \text{div} \ u + u = f \quad \text{in} \ \Omega, \quad u \cdot n = 0 \quad \text{on} \ \partial \Omega.
\]

Variational formulation in \(\mathbb{V} = H_0(\text{div}; \Omega) \):

\[
\mathcal{B}[u, v] := \int_{\Omega} \nabla u \cdot \nabla v \ dx - \int_{\Omega} p \nabla \cdot v \ dx - \int_{\partial \Omega} \nabla \cdot u q \ dx = \langle f, v \rangle
\]

for all \((v, q) \in \mathbb{V} \).

- \(\mathcal{B} \) is continuous and fulfills the inf-sup condition;
- Discretization by Raviart-Thomas or Brezzi-Douglas-Marini Elements of any order \(p \);
- Global upper bound for any order;
- Continuous and discrete local lower bound for any order:
 - the projection in the discrete lower bound for Raviart-Thomas Elements of order \(p \geq 2 \) is sub-optimal.

Example (The Stokes Problem)

Variational formulation in \(\mathbb{V} = H^1_0(\Omega; \mathbb{R}^d) \times L^2(\Omega) \):

\[
\mathcal{B}[u, (v, q)] := \int_{\Omega} \nabla u \cdot \nabla v \ dx - \int_{\Omega} p \nabla \cdot v \ dx - \int_{\partial \Omega} \nabla \cdot u q \ dx = \langle f, v \rangle
\]

for all \((v, q) \in \mathbb{V}

- \(\mathcal{B} \) is continuous and fulfills the inf-sup condition;
- Discretization by the Taylor-Hood Elements of order \(p \geq 2 \);
- Global upper bound for

\[
\mathcal{E}_T^2(T) := h_T^2 \| - \Delta U_T + \nabla P_T - f \|_{2;T}^2 + h_T \| U_T \|_{2,\alpha_T}^2 + \| \text{div} U_T \|_{2;T}^2
\]

and

\[
\mathcal{E}_T^2(T) := h_T^2 \| - \Delta U_T + \nabla P_T - f \|_{2;T}^2 + h_T \| U_T \|_{2,\alpha_T}^2.
\]

- Continuous local lower bound for both variants;
- Discrete local lower bound available only for the second variant.
Examples

Example (The Biharmonic Equation in \(\mathbb{R}^2 \))

\[\Delta^2 u \text{ in } \Omega, \quad u = \nabla u \cdot n = 0 \text{ on } \partial \Omega. \]

Variational formulation in \(V = H^2_0(\Omega) \):

\[B[u, v] := \int_{\Omega} \Delta u \Delta v \, dx = \langle f, v \rangle \quad \forall v \in V. \]

- \(B \) is continuous and coercive.
- Discretization by the Argyris Triangle: piecewise \(P_5 \) and \(H^2 \) conforming.
- Global upper bound.
- Continuous local lower bound.
- No discrete local lower bound available, seems to be tough.

Adaptive Loop and Basic Assumptions

Assumptions on Refinement

Use **bisectional refinement** and denote by \(T \) the set of all possible, conforming refinements of \(T_0 \).

- Refinement can be generalized to more general grids and quasi-regular element subdivisions that generate locally quasi-uniform grids.

Assumptions on Finite Element Spaces

The **finite element spaces** have the following properties:

- for any \(T \in \mathcal{T} \), \(V(T) \subset \mathcal{V} \) is a conforming finite dimensional space;
- the spaces are **nested**: if \(T' \) is a refinement of \(T \) then \(V(T') \subset V(T) \);
- the spaces satisfy a uniform discrete inf-sup condition.

- Nesting of spaces follows from properties of refinement in combination with appropriate local function spaces.
- Coercivity of \(B \) implies the uniform inf-sup condition.

Convergence of Mesh Size Functions

Define the local mesh size function \(h_k \in L^\infty(\Omega) \) by

\[h_k|_T := |T|^{1/4} \approx \text{diam}(T) \quad \forall T \in T_k. \]

Lemma (Morin, S. Veeser ’08)

For any realization of SEMR there exists a unique \(h_\infty \in L^\infty(\Omega) \) such that

\[\lim_{k \to \infty} \| h_k - h_\infty \|_{L^\infty(\Omega)} = 0. \]

Idea of the Proof.

For any \(x \in \Omega \) the sequence \(\{ h_k(x) \} \) is monotone and bounded from below:

\[h_\infty(x) := \lim_{k \to \infty} h_k(x) \geq 0 \quad \text{exists for all } x \in \Omega. \]

Convergence in \(L^\infty \) the follows from

\[T \text{ is refined into } T_1, T_2 \implies |T_1| = |T_2| = \frac{1}{2} |T|. \]
Convergence of Mesh Size Functions

In general, \(h_\infty \neq 0 \) in \(\Omega \). If \(h_\infty(x) > 0 \), then there is an element \(T \ni x \) and \(K = K(x) \) such that
\[
T \in T_k \quad \forall k > K.
\]

Splitting of \(T_k \)

1. Set of elements that are not refined anymore
\[
T_k^+ : = \{ T \in T_k \mid T \in T_k \forall \ell \geq \ell \};
\]
2. Set of elements that are refined at least once
\[
T_k^- : = T_k \setminus T_k^+.
\]

Corollary (Morin, S. Veeser ‘08)
The mesh size functions vanish uniformly in \(\Omega_k^0 = \Omega(T_k^0) : = \bigcup \{ T : T \in T_k^0 \} \):
\[
\lim_{k \to \infty} \| h_k \|_{H^1(\Omega_k^0)} = 0.
\]

Convergence of Galerkin Solutions

Consequences for a Convergence Proof
It suffices to show \(u_\infty = u \) since convergence
\[
\lim_{k \to \infty} U_k \to u_\infty \quad \text{in } V
\]
is established for any adaptive iteration SEMR.

The residual \(R(u_\infty) \) and \(u_\infty = u \)
Using the residual \(R(w) \in V^* \) defined by
\[
R(w) : = B[w - u, v] = B[w, v] - \langle f, v \rangle \quad \forall v, w \in V.
\]
we reformulate
\[
u_\infty = u \iff R(u_\infty) = 0 \quad \text{in } V^*
\]

1. In case \(V^* = V \) definition of \(u_\infty \) implies \(R(u_\infty) = 0 \).
2. In case \(V^* \neq V \) properties of ESTIMATE and MARK have to yield \(R(u_\infty) = 0 \).

Lemma (Morin, S. Veeser ‘08)
For any realization of SEMR there exists a unique \(u_\infty \in V \) such that
\[
\lim_{k \to \infty} |U_k - u_\infty|_V = 0.
\]

Proof for coercive \(B \).
The space
\[
V_\infty = \bigcup_k V_k^{\infty}
\]
is a closed subspace of \(V \). The Lax-Milgram theorem then implies the existence of a unique solution \(u_\infty \) to
\[
u_\infty \in V_\infty : \quad B[u_\infty, v] = \langle f, v \rangle \quad \forall v \in V_\infty.
\]
Convergence follows from the quasi-best approximation property
\[
\|U_k - u_\infty\|_V \leq c_0 h_\infty^2 \|B\| \min_{V \in V_k} \|V - u_\infty\|_V \to 0 \quad \text{as } k \to \infty
\]
by construction of \(V_\infty \).

Density

Local Approximation Property of the Finite Element Spaces
Let \(\mathbb{W} \subset V \) be dense, \(q > 0 \). Assume that for any \(T \in T \) there exists an interpolation operator \(I_T : \mathbb{W} \to V(T) \) such that for all \(w \in \mathbb{W} \)
\[
\|w - I_T w\|_{V(T)} \lesssim \|h_T^{-q}\|_{H^q(T)} \|w\|_{W(T)} \quad \forall T \in T.
\]
Claim
\[
V_\infty = V \iff h_\infty \equiv 0 \quad \text{in } \Omega
\]

1. \(h_\infty \neq 0 \): Then \(T_k^+ \neq k > K \) which implies \(V \not\subset V_\infty \).
2. \(h_\infty \equiv 0 \): Use density of finite element spaces: for \(v \in V \) and \(w \in \mathbb{W} \) estimate
\[
\|v - I_k w\|_{V(T)} \lesssim \|w - w\|_{V(T)} + \|w - I_k w\|_{V(T)} \lesssim \|v - w\|_{V(T)} + \|h_k\|_{H^q(T)} \|w\|_{W(T)} \lesssim \epsilon
\]
by first choosing \(w \) close to \(v \) and then \(k \) large.
Density

For $h_k \neq 0$ we still obtain for any $v \in V$ and $w \in W$

$$\|v - I_k w\|_{V(\Omega_k^2)} \leq \|v - w\|_{V(\Omega_k^2)} + \|w - I_k w\|_{V(\Omega_k^2)} \lesssim \|v - w\|_{V(\Omega)} + \|h_k\|_{\infty, \Omega_k^2} \|w\|_{W(\Omega)} \leq \varepsilon$$

by first choosing w close to v and then k large, thanks to

$$\|h_k\|_{\infty, \Omega_k^2} \to 0 \quad \text{as } k \to \infty.$$

Remarks

1. This local density property we are going to use explicitly in the convergence proof. It replaces a (discrete) local lower bound.
2. Needs a way to build in local features via the upper bound!
3. The local density property is already implicitly used in all other convergence proofs.

Prior Results

Convergence proof without lower bound for symmetric elliptic problems:

$$B[v, w] := \int_{\Omega} \nabla v^T A \nabla w + c v w \, dx \quad v, w \in V := H^1_0(\Omega)$$

with the residual estimator

$$E_T^2(T) := \| h_T' (- \text{div} (A \nabla U_T + c U_T - f)) \|_{0, T}^2 + \| h_T/2 \| \| A \nabla U_T \|_{0, \Omega_T}$$

and Dörfler marking with $0 < \theta \leq 1$.

Choose $M \subset T$:

$$\theta E_T(T) \leq E_T(M).$$

Theorem (Cascon, Kreuzer, Nochetto, S. '08)

SEMR is a contraction, i.e., there exists $0 < \alpha < 1$ and $\beta > 0$ such that

$$\|U_k - u\|_\Omega^2 + \beta \xi_k(T_k) \leq \alpha (\|U_{k-1} - u\|_\Omega^2 + \beta \xi_{k-1}(T_{k-1})).$$

If, in addition, θ is sufficiently small and M_k minimal, then SEMR is quasi-optimal in terms of DOFs.

- Optimality proof utilizes the global continuous lower bound.
Convergence of the Error

Theorem (S. ’08)

Assume that the above assumptions on refinement, finite element spaces, estimator, and marking are satisfied. Then SEMR converge, i.e.,

\[
\lim_{k \to \infty} \| U_k - u \|_V = 0.
\]

Proof

Since \(U_k \to u_\infty \) in \(V \), it remains to show

\[
\langle \mathcal{R}(u_\infty), v \rangle = 0 \quad \forall v \in V \quad \iff \quad \langle \mathcal{R}(u_k), w \rangle = 0 \quad \forall w \in W,
\]

by density of \(W \) in \(V \). Using continuity of \(\mathcal{R} : V \to V^* \) this reduces to

\[
\lim_{k \to \infty} \langle \mathcal{R}(U_k), w \rangle = 0 \quad \forall w \in W, \quad ||w||_W = 1.
\]

The sets \(T_k^+ \) are nested, which grants for \(k \geq \ell \)

\[
T_k^+ \subset T^+_k \subset T_k \quad \text{and} \quad \Omega^0_k = \Omega(T_k^0) = \Omega(T_k \setminus T_k^+).
\]

Remark

The theorem does not imply convergence of the estimator, since it includes non-efficient estimators and allows for strong overestimation!

Continuous Lower Bound

Let the indicators satisfy

\[
\mathcal{E}_T(T) \lesssim \| U_T - u \|_{V(\omega(T))} + \text{osc}_T(\omega(T)),
\]

where oscillation can be estimated by

\[
\text{osc}_T(\omega) \lesssim \| h_T \|_{L^1(T)} (\| U_T \|_{V(\omega(T))} + \| D \|_{2,\omega(T)})
\]

for some \(r > 0 \) and \(D \in L^2(\Omega) \).

Corollary (S. ’08)

If, in addition, the estimator satisfies the continuous local lower bound, then SEMR yields

\[
\lim_{k \to \infty} \mathcal{E}_k(T_k) = 0.
\]
Convergence of the Estimator

Proof
As in the previous proof we split for $k \geq \ell$

$$\mathcal{E}_k(T_k) \lesssim \mathcal{E}_k(T_k \setminus T_k^\ell) + \mathcal{E}_k(T_k^\ell) \lesssim \|U_k - u\|_{V(T_k^\ell)} + \text{osc}_k(\Omega_k^\ell) + \mathcal{E}_k(T_k^\ell). \quad (*)$$

1. The error is controlled by the previous theorem:
$$\|U_k - u\|_{V(\Omega_k^\ell)} \leq \|U_k - u\|_V \to 0 \quad \text{as } k \to \infty.$$

2. Oscillation can be estimated in Ω_k^ℓ by assumption in an a priori way:
$$\text{osc}_k(\Omega_k^\ell) \lesssim \|h_k^\ell\|_{\infty, \Omega_k^\ell} (\|U_k\|_V + \|D\|_{L^2(\Omega)}) \\
\lesssim \|h_k^\ell\|_{\infty, \Omega_k^\ell} \to 0 \quad \text{as } \ell \to \infty.$$

3. The remaining part of the estimator can be handled as before:
$$\mathcal{E}_k(T_k^\ell) \to 0 \quad \text{for } \ell \text{ fixed and } k \to \infty.$$

Summarizing: The right hand side of (*) can be made arbitrarily small by first choosing ℓ large and then $k \geq \ell$ even larger.

Remarks

1. General convergence proof for adaptive finite elements with mild assumptions on the ingredients, most easy to verify.

2. Convergence does not need the lower bound, "practical" convergence and convergence into tolerance need efficient estimators:
 - Includes strategies, where the given tolerance enters the selection, like the equidistribution strategy:
 $$\mathcal{M} = \{ T \in T \mid \mathcal{E}_k(T) \geq \theta \text{TOL} (\#T)^{-1/2} \},$$
 - For efficient estimators, the assumption on marking can be generalized such that it is essentially necessary:
 $$\lim_{k \to \infty} \max_{T \in T_k} \mathcal{E}_k(T) = 0 \quad \text{then} \quad \forall T \in T^+ : \lim_{k \to \infty} \mathcal{E}_k(T) = 0,$$
 where
 $$T^+ = \bigcup_{k \geq 0, \ell \geq k} T_k$$
 is the set of elements that are not refined.