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This document contains two independent parts: 
(i) The first part consists of four pages with a survey on mixed Eulerian-Lagrangian 
approaches and a short discussion. 
(ii) The second part consists of seven pages, and is the logic continuation of the 
blackboard notes (available in the links provided) about Eulerian-Lagrangian approaches 
that follow from a unifying variational principle. This seven-page document contains a 
detailed description of the so-called hybrid Eulerian-Lagrangian approach, originally 
developed by Soward and Andrews&McIntyre; it discusses its applications in turbulence 
and mentions briefly the related Euler-α approach introduced by Holm. 
 

Definitions 

 
1. Eulerian methods. These are all numerical methods whose underlying evolution 

equations are written for a set of fields (scalar, vectorial, tensorial, etc.) that depend on the 

time variable t and space variables x = (x1, … , xN), where the space variables correspond 

physically to the spatial position on a time-independent coordinate system. 
 

Examples: Any pseudo-spectral method, finite-difference method, finite-volume method, 
finite element method, spectral element method, in Cartesian or in mapped coordinates, 
but with static spatial grid. Also, adaptive-mesh methods where the mesh is static 
piecewise in time: only at some times the mesh is re-generated in order to resolve more 
certain regions of intense activity. 
 

Advantages of Eulerian: Main advantage is simplicity of coding and logical structure of the 
spatial points. 
 

Disadvantages of Eulerian: Main disadvantage is that the fixed grid does not take into 
account the anisotropy and inhomogeneity of the flow, and thus the method has difficulty to 
resolve sharp features of the flow such as pre-shocks. Moreover, in the case of 
complicated boundaries (fixed or moving), the mesh in the Eulerian approach is hard to 
parameterise in the numerical code and has to be treated in an ad-hoc manner. 
 

 

2. Lagrangian methods. These are all numerical methods whose underlying evolution 
equations are written for a set of fields (scalar, vectorial, tensorial, etc.) that depend on the 

time variable t and  so-called“label” variables a = (a1, … , aN), where the latter 

variables correspond physically to the initial spatial positions of a set of “markers”whose 

positions r(t) are functions of time and the labels: r(t) = (r1(a,t), …, rN(a,t)). The markers' 

positions satisfy certain set of non-linearly coupled ordinary differential equations. The 
fields of the Eulerian picture are not independent: they become functions of time via their 
dependence on the markers. 
 

Examples: Particle methods for fluid dynamics such as: 



 Vortex method (VM) [Rosenhead L., The spread of vorticity in the wake behind a 
cylinder, Proc. R. Soc. A 127, 590–12 (1930); Krasny R., A study of singularity 
formation in a vortex sheet by the point vortex approximation, J.Fluid Mech. 167, 65–93 
(1986)].  

 Smoothed particle hydrodynamics (SPH) [L.B. Lucy. A numerical approach to the 
testing of the fission hypothesis. Astron. J., 82, 1013–1024 (1977); R.A. Gingold and 

J.J. Monaghan. Smoothed Particle Hydrodynamics: Theory and application to 
non-spherical stars. Mon. Not. R. Astr. Soc., 181, 375–389 (1977)], independently 

suggested by Salmon [R. Salmon. Practical use of Hamilton’s principle. J. Fluid Mech., 
132 431–444 (1983)] in the context of geophysical fluid dynamics.  

 See the review by P. Koumoutsakos [Multiscale flow simulations using particles, 
Annu. Rev. Fluid Mech. 37, 457–87 (2005)]. 

Advantages of Lagrangian: It usually describes much more accurately natural interfaces 
such as the dynamically advected boundaries between two different fluids, and vortex 
sheets. Also, typically resolution is automatically increased in regions of high density. 
There is a bit more freedom regarding spatial boundary conditions, but there are 
complications due to the coarsening of the particles near the boundaries, which generate 
spurious small scales.  

 

Disadvantages of Lagrangian: Problems near solid boundaries and severe particle 
distortion due to inhomogeneity, both leading to generation of spurious small scales. The 
problem of computing the Eulerian fields from the Lagrangian markers requires an 
interpolation algorithm that takes a significant proportion of computer time (unless it is a 
linear interpolation, which produces a significant amount of errors). 
 

 
3. Mixed/hybrid Eulerian-Lagrangian methods. This category is more fuzzy. One can 

say that these are all numerical methods where some of the underlying fields belong to 
Eulerian category and some others belong to Lagrangian. In some of these methods, only 
the Lagrangian fields need to be integrated in time, in such a way that some conservation 

laws are “explicitly conserved” except for the error in the integration of the Lagrangian 

variables. In others, both Eulerian and Lagrangian fields are evolved. Yet in others, only 
Eulerian fields are evolved. 
In this category we also find so-called hybrid methods, where in some parts of the fluid an 
Eulerian solver is used (typically near bounding walls) and this is coupled with a 
Lagrangian solver in other parts of the fluid. 
 

Examples:  

 Particle-in-cell algorithm [Harlow, F. H., The particle-in-cell computing method for 
fluid dynamics, Methods Comput. Phys. 3, 319–343 (1964)]. 

 Particle-mesh method, described in the textbooks by Hockney & Eastwood [R.W. 
Hockney and J.W. Eastwood. Computer Simulations Using Particles. IOP Publisher 
(1988)] and Birdsall & Langdon [C.K. Birdsall and A.B. Langdon. Plasma Physics via 
Computer Simulations. McGraw-Hill, New York, (1981)].  

 See also a Hamiltonian particle-mesh method in the spirit of the Euler alpha-model 
in [J. Frank, G. Gottwald, and S. Reich. The Hamiltonian particle-mesh method. In M. 
Griebel and M.A. Schweitzer, editors, Meshfree Methods for Partial Differential 
Equations, volume 26 of Lect. Notes Comput. Sci. Eng., pages 131–142, Berlin 
Heidelberg, 2002. Springer-Verlag.].  

 Also, Kuznetsov's method of vortex lines [V. A. Zheligovsky, E. A. Kuznetsov and O. 
M. Podvigina, Numerical Modeling of Collapse in Ideal Incompressible Hydrodynamics, 
JETP Letters 74, 367–370 (2001)] for 3D Euler equations, where the Eulerian vorticity 



is obtained in terms of the markers. 
 

Also in this category one finds methods which are purely Eulerian in form but which 
contain information on Lagrangian variables, such as the evolution of Clebsch-Weber 
variables [K. Ohkitani and P. Constantin. Numerical study of the Eulerian–Lagrangian 
formulation of the Navier–Stokes equations. Physics of Fluids 15, 3251–3254 (2003); C. 
Cartes, M. D. Bustamante, and M. Brachet. Generalized Eulerian-Lagrangian description 
of Navier-Stokes dynamics. Physics of Fluids 19, 077101 (2007)].  

 

Also, adaptive-mesh methods where the mesh not only changes its resolution at discrete 
times, but also moves with the fluid or in another prescribed manner. For example, Grauer 
et al. [R. Grauer, C. Marliani, and K. Germaschewski, Adaptive mesh refinement for 
singular solutions of the incompressible Euler equations, Phys. Rev. Lett. 80, 4177 (1998)] 

and Ceniceros&Hou [H. D. Ceniceros and T. Y. Hou, An Efficient Dynamically Adaptive 
Mesh for Potentially Singular Solutions, J. Comput. Phys. 172, 609-639 (2000)] 

 

Finally, hybrid particle level set methods where one is interested in following a sharp 
dynamically moving boundary such as the boundary between two fluids or a vortex patch, 
treating the boundary as an Eulerian level set but using Lagrangian particles to monitor the 
level set accuracy and even to determine the level set. See [D. Enright , R. Fedkiw , J. 
Ferziger , I. Mitchell, A Hybrid Particle Level Set Method for Improved Interface Capturing, 
J. Comput. Phys 183, 83–116 (2002)].  

 

Advantages of mixed/hybrid: Typically it is possible to get the best of both Eulerian and 
Lagrangian worlds using mixed or hybrid approaches. 
 

 

 

Hybrid and mixed approaches in fundamental turbulence 

 

Thinking of fundamental turbulence, what is the main argument in favour of hybrid or 
mixed approaches? The answer to this question depends on what is considered as 
fundamental turbulence. As is well known, the definition of turbulence is not universal [A. 
Tsinober, An Informal Conceptual Introduction to Turbulence, Springer (2009)]. 
 

If we are looking at only Eulerian statistics in simple geometries then obviously the best 
choice is a purely Eulerian approach. However if one is interested in Lagrangian statistics 
such as Lagrangian velocity structure functions or alignment of vorticity with Lagrangian 
velocity gradients, then it is more natural to try from the start a Lagrangian or a mixed 
approach, since then there is more control on the accuracy of the conservation of 
Lagrangian quantities such as mass, vortex lines, magnetic field lines, etc. Conservation of 
these quantities would be a critical requirement in the case of Lagrangian statistics. 
Interestingly, the majority of investigations up to date of Lagrangian statistics make use of 
Eulerian methods and the Lagrangian properties are computed in post-processing [F. 
Toschi and E. Bodenschatz, Lagrangian Properties of Particles in Turbulence, Annu. Rev. 

Fluid Mech. 41, 375 – 404 (2009)]. The reason for this choice is that the current 

state-of-the-art memory capacities and computer speed of Lagrangian numerical methods, 
are below the level required for a statistical convergence of the various Lagrangian 
quantities of interest. 
 

Even for Eulerian statistics alone, sometimes one is looking at conditional statistical 
quantities whose main contributions come from localised spatial regions where intense 



velocity gradients appear. There, adaptive-mesh schemes or hybrid Eulerian-Lagrangian 
schemes could be essential in order to maintain the required high level of accuracy. 
 

Correspondingly, if one is interested in explaining experimental observations, then 
depending on the nature of the experiment one will prefer Eulerian to Lagrangian methods. 
For example, if the measurements are at fixed positions, then the natural method is 
Eulerian and if the measurements use particle tracking or similar methods, then the natural 
method is a Lagrangian or a mixed approach. Here, the fact that real particles are not point 
particles leads to increased complexity in the modelling of the particle advection. This 
feeds back on the numerical modelling and numerical methods, both in Eulerian and 
Lagrangian approaches. 
 

Open Discussion: Paradigms 

 

Let us consider the general research area of statistical properties of turbulence, without 
going into any details regarding the flow properties or even the type of physical fluids.  

 

Rather than concentrating on “fundamental” turbulence questions within this area, it is 

perhaps useful to decide or discuss a set of paradigms regarding what is necessary to 
achieve in order to improve significantly the state-of-the-art in numerical turbulence 
research. We propose the following paradigms: 
 
P1. One should aim at finding the numerical method that provides the most accurate 

numerical solution to the underlying fluid equations, given an “arbitrary” initial condition. 

Thus, if accuracy is optimised for a single arbitrary realisation of the dynamical fields, then 
this accuracy will transfer to the statistical description. 
 
P2. One should consider a set of validation tests of numerical methods in the light of 

paradigm P1. Ideally, these validation tests should be defined a priori, or in any case, 
independently of the knowledge of Eulerian or Lagrangian methods. This is in order to 
avoid any potential biases, conscious or unconscious, in favour of certain types of 
numerical approaches. 
 

Notice that the first paradigm is broken by any ad-hoc stochastic model of turbulence. But 
the current evidence is that turbulence statistics does not follow any ad-hoc rule. 
 

 

 
Open Discussion: Some Questions 

 

In the light of the above paradigms P1 and P2, we plan to consider a couple of questions 
whose answer might require a mixed Eulerian/Lagrangian numerical method, or better a 
comparison of this mixed method with purely Eulerian methods and purely Lagrangian 
methods. 
Q1. How to capture consistently reconnection events in fluids such as 3D Navier-Stokes or 

2D / 3D resistive MHD? 
Q2. How to accurately describe the evolution of intense vorticity events in 3D Euler or 3D 

Navier-Stokes? 

 

Notice that these two questions do not involve directly a statistical computation, so their 
answer can be obtained by comparing single realisations of solutions of the underlying 
partial differential equations. 
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Some Eulerian-Lagragian models or approaches in fluid mechanics

Miguel D. Bustamante, University College Dublin
Lecture Notes for the Eulerian-Lagrangian Meeting at WPI Vienna, 07-10 May 2012

This is a continuation of the lecture on Tuesday 08 May 2012 (blackboard pictures should be
available).

Remark. The basic formulation of action principles for the incompressible fluid equations (density
is taken equal to one for simplicity), presented on Tuesday 08 May 2012, justifies the use of
geometrical structures for describing the evolution of the fields:

∂

∂t
U + LuU = −∇Π , (1)

where U is to be understood as a momentum field (technically, a 1-form field) and u as a velocity
field, and the “Lie derivative of U along u” is defined by:

(LuU)i ≡ u · ∇Ui + Uj∇iu
j

(Einstein convention of sum over repeated indices), where ∇i ≡ ∂
∂xi
, and a ·B ≡ ajBj.
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I. 3D EULER FLUID EQUATIONS

We consider the familiar case of the 3D Euler fluid equations for an incompressible fluid in an
Euclidean base space. There, the relation between U and u is, in Cartesian coordinates, simply
Ui = δiju

j so there is a perfect component-by-component identification between momentum
and velocity, only in Cartesian coordinates. The incompressibility condition is, in Cartesian
coordinates, ∇ · u = 0.

The formulation (1) has several advantages. First, notice that under an arbitrary invertible
coordinate transformation xi → x̃i(x1, x2, x3) we have the result

∂

∂t
Ũ + LũŨ = −∇̃Π̃ , (2)

where now tilded variables are defined as follows: ũj = ∂x̃j

∂xk
uk , Ũj = ∂xk

∂x̃j
Uk , and of course(

LũŨ
)
i
≡ ũ · ∇̃Ũi + Ũj∇̃iũ

j,
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where ∇̃j = ∂xk

∂x̃j
∇k. So the evolution equation has the same form in any coordinate system.

On the other hand, the incompressibility condition ∇ · u = 0 transforms, in the tilded coor-
dinate system, to the equation

∇̃ ·
(

det

[
∂xk

∂x̃j

]
ũ

)
= 0,

which is more complicated than the Cartesian version.
The second advantage is that the Kelvin circulation theorem (conservation of circulation)

is best written in terms of the momentum U, again in a way that does not depend on the
coordinate system. For 3D Euler we have the conservation of the line integral:

d

dt

∮
C(t)

U · dx = 0 ,

where C(t) is any closed loop that is advected by the flow, as a “material” loop. Correspondingly,
in the new coordinate system x̃j, the theorem is

d

dt

∮
C̃(t)

Ũ · dx̃ = 0 .

The third advantage is that this formulation can be extended to the MHD equations in a
similar fashion.

II. THE HYBRID EULERIAN-LAGRANGIAN (HEL) APPROACH

Remark: change of notation. From here on, the notation for the Cartesian coordinates will
be x̃i, i = 1, 2, 3, and the notation for curved coordinates will be xi , i = 1, 2, 3. The reason
for this change of notation is that, in this formalism, all equations end up being written in the
curved coordinate system xi rather than the original system.

A. Paradigms

This approach deals with flows that have an important “mean part” plus fluctuations. The
first paradigm of the model is to understand the fluctuations of the fluid’s velocity solely in
terms of a “fluctuating” coordinate transformation. Recall that there is a direct relation between
Lagrangian coordinates and Eulerian velocities, and this model exploits this relation. We define
the variables x̃i as the actual position coordinates of the particles, and assume that they are
Cartesian coordinates and also ‘fluctuating’ coordinates. We denote by xi their averages, so we
write:

x̃i = xi + ξi(x1, x2, x3, t) , i = 1, 2, 3, (3)

where on average, 〈
ξi(x1, x2, x3, t)

〉
= 0 , i = 1, 2, 3, (4)〈

xi
〉

= xi , i = 1, 2, 3, (5)

so xi is non-fluctuating and 〈x̃i〉 = xi. This average can be understood in terms of ensembles,
but formally the theory should work if we replace the ensemble average by any linear operator
with the above properties. Notice that ξi(x1, x2, x3, t) is not necessarily small.

Coordinates x̃i are termed “HEL” coordinates (hybrid Eulerian-Lagrangian), and any func-
tion of these coordinates is called an “HEL” variable 1 2. In this document we just call them

1 D. G. Andrews and M. E. McIntyre, JFM 89, 609–646 (1978)
2 A. M. Soward and P. H. Roberts, JFM 661, 45–72 (2010)
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‘fluctuating’ coordinates. Our notation x̃i differs from the conventional notation (xi)L, used in
the cited references.

In this way, equation (3) defines a transformation from average coordinates xi to fluctuating
coordinates x̃i. The rest of this Section deals with the implications of this coordinate transfor-
mation on: (i) the transformation law from the velocity field defined on the Cartesian coordinate
system x̃i and the curvilinear coordinate system xi, (ii) the transformation law of the dynamical
equations from the Cartesian coordinate system to the curvilinear one, and (iii) the amazing way
in which the ensemble-averaged equations get simplified in the curvilinear coordinate system.

There will be a slight extra complexity in the transformation of the velocity fields due to
the explicit time-dependence of the coordinate transformation, but this is easy to deal with. It
follows from the basic chain rule that due to the time-dependent transformation (3), the velocity
field components in the coordinate system xi are equal to

ui(x1, x2, x3, t) =
∂xi

∂x̃j

(
ũj(x̃1, x̃2, x̃3, t)− ∂ξj

∂t
(x1, x2, x3, t)

)
, i = 1, 2, 3, (6)

where ũj(x̃1, x̃2, x̃3, t) is the actual velocity field of the particle in the Cartesian coordinates x̃i.

The extra term ∂ξj

∂t
comes from the explicit time dependence of the coordinate transformation.

The definition of the average coordinates xi as non-fluctuating, implies by a consistency
argument that the velocity field u(x1, x2, x3, t) is non-fluctuating:〈

u(x1, x2, x3, t)
〉

= u(x1, x2, x3, t). (7)

A second paradigm of the model is to use Euler equations rather than Navier-Stokes, as an
approximation for the dynamics of the fluid at the ‘inertial’ scales, i.e., where dissipation is not
important. This is a simplicity paradigm, not an essential paradigm in the model.

A third paradigm of the model is to assume that the “fluctuating” coordinate system x̃i is
Cartesian, i.e., our familiar coordinate system. Therefore, in the fluctuating coordinates the form
of the Euler equations is just the usual familiar formulation because Ũ can be identified with
ũ, component by component. So the evolution equations for the velocity field in Cartesian,
fluctuating coordinates, are assumed to be the usual 3D Euler equations:

∂

∂t
Ũ + LũŨ = −∇̃Π̃ , (8)

where the incompressibility condition is given by the usual equation ∇̃ · ũ = 0.

B. Result 1: Euler equations in the curvilinear coordinate system, and their averages

It is possible to show, after some straightforward calculations, starting from equations (8),
that the evolution equations in the xi coordinate system (which is curved but non-fluctuating)
are:

∂

∂t
U + LuU = −∇Π , (9)

Uj =
∂x̃k

∂xj
Ũk, (10)

and the relation between u and ũ is given in equation (6).
The raison d’être of the HEL approach is that the ensemble average of equation (9) does

not involve quadratic quantities: from the fact that the velocity field u(x1, x2, x3, t) is non-
fluctuating, it follows that the average of LuU is simply

〈LuU〉 = Lu〈U〉.
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We remark that this equation is not an approximation. The average of equation (9) gives the
exact result

∂

∂t
〈U〉+ Lu〈U〉 = −∇〈Π〉 , (11)

which is formally the same type of equation as Euler equations but now the relationship between
〈U〉 and u is more involved due to the combined effects of: (i) the fact that xi is a curvilinear
coordinate system, and (ii) the use of ensemble averages to obtain 〈U〉. In Subsection II C we will
look at this relationship in detail. Historically, equations (11) are called “Generalized Lagrangian
mean equations” or GLM equations since Andrews & McIntyre (1978, op.cit.).

We remark that Kelvin’s circulation theorem applies to the averaged equations, so we have

d

dt

∮
C(t)
〈U〉 · dx = 0 ,

where C(t) is a closed curve that moves with the non-fluctuating fluid velocity u.
Finally, the density of the fluid in the curved, non-fluctuating coordinates, is not trivial. We

have by definition:

ρ(x1, x2, x3, t) ≡ det

(
∂x̃i

∂xj

)
,

and this density satisfies the continuity equation, in curved coordinates:

∂ρ

∂t
+∇ · (ρu) = 0.

Averaging this equation gives the result:

∂〈ρ〉
∂t

+∇ · (〈ρ〉u) = 0. (12)

C. Result 2: Explicit relation between the average momentum 〈U〉 and the non-fluctuating

fluid velocity u

It would appear to be fundamentally unjustified to simply identify the non-fluctuating fluid
velocity components ui(x1, x2, x3, t) (defined in curvilinear, non-fluctuating coordinates xi) with
the average fluid velocity components 〈ũi(x̃1, x̃2, x̃3, t)〉 (defined in Cartesian, fluctuating coor-
dinates x̃i). The reason being that these velocity fields ‘live’ in different coordinate systems.
Think for example of a coordinate transformation that took us from Cartesian to spherical co-
ordinates. Would it make sense to relate, say, the radial component to any particular, fixed,
Cartesian component? Obviously not.

However, it is quite illuminating to see that such identification can be justified —and, more
importantly, mathematically validated— in the HEL approach, by the fact that the coordinate
transformation from xi to x̃i is not too singular.3 After all, by definition, the average of this
transformation is just the identity transformation (but things are not trivial, as we will see below).
So let us use the defining transformation (6) to compute explicitly the averages 〈ũi(x̃1, x̃2, x̃3, t)〉.
First, we solve equation (6) for ũi to get:

ũi(x̃1, x̃2, x̃3, t) =
∂ξi

∂t
(x1, x2, x3, t) +

∂x̃i

∂xj
(x1, x2, x3, t)uj(x1, x2, x3, t) , i = 1, 2, 3. (13)

Second, we use equation (3) to find: ∂x̃i

∂xj
= δij + ∂ξi

∂xj
. Third, we take average of equation (13)

and use the facts that 〈
∂ξi

∂t
(x1, x2, x3, t)

〉
= 0

3 singular in the sense that spherical coordinates are singular at the z-axis.
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and 〈
∂ξi

∂xj
(x1, x2, x3, t)uj(x1, x2, x3, t)

〉
=

〈
∂ξi

∂xj
(x1, x2, x3, t)

〉
uj(x1, x2, x3, t) = 0.

We deduce readily: 〈
ũi(x̃1, x̃2, x̃3, t)

〉
= ui(x1, x2, x3, t) , i = 1, 2, 3,

component by component.

This result agrees with original heuristic motivation that the field ui(x1, x2, x3, t) is the
“mean” velocity fluid. However, this result is not useful for computing the dynamics: what
we need is 〈Ui〉, which is what appears in the dynamical equation (11).

We have, from equation (10):

Ui(x
1, x2, x3, t) =

∂x̃j

∂xi
Ũj =

(
δji +

∂ξj

∂xi

)
δjkũ

k ,

and using equation (13) we get

Ui(x
1, x2, x3, t) =

∂x̃j

∂xi
Ũj =

(
δji +

∂ξj

∂xi

)
δjk

(
∂ξk

∂t
+
∂x̃k

∂xm
um
)
,

so, expanding the terms and summing up the Kronecker deltas,

Ui(x
1, x2, x3, t) = δik

∂ξk

∂t
(x1, x2, x3, t) + δimu

m(x1, x2, x3, t) + δik
∂ξk

∂xm
um(x1, x2, x3, t)

+
∂ξj

∂xi
δjk

∂ξk

∂t
(x1, x2, x3, t) +

∂ξj

∂xi
δjmu

m(x1, x2, x3, t) +
∂ξj

∂xi
δjk

∂ξk

∂xm
um(x1, x2, x3, t).

Finally we average this equation and observe that in the RHS, the first, third and fifth terms
vanish after averaging. Therefore we get

〈
Ui(x

1, x2, x3, t)
〉

= δjk

〈
∂ξj

∂xi
∂ξk

∂t

〉
+ δimu

m(x1, x2, x3, t) + δjk

〈
∂ξj

∂xi
∂ξk

∂xm

〉
um(x1, x2, x3, t).

Physically, the fluctuating coordinates have generated an extra drift in the momentum, due to
the time dependence of the fluctuations, and also a deformation (with respect to the Euclidean
metric) of the relation between velocity components and momentum components, due to the
spatial dependence of the fluctuations.

We remark that the density of the fluid in curved, non-fluctuating coordinates is given explicitly
in terms of the fluctuations ξi(x1, x2, x3, t) :

ρ(x1, x2, x3, t) = det

(
∂x̃i

∂xj

)
= det

(
δij +

∂ξi

∂xj

)
,

so the average of the density can be computed explicitly in terms of the averages of powers
of fluctuations. In general, the averages of up to third powers of fluctuations would appear.
We remark that in the literature, different authors make different simplifying extra assumptions
about this density. We will not discuss this.
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III. SUMMARY OF THE HYBRID EULERIAN-LAGRANGIAN (HEL) APPROACH

In summary, starting from the usual 3D Euler fluid equations for the velocity field in a fluc-
tuating Cartesian coordinate system, we arrive without approximations at the following average
equations of motion in the curved, non-fluctuating coordinate system:

∂

∂t
〈U〉+ Lu〈U〉 = −∇〈Π〉 , (14)

where u ≡ u(x1, x2, x3, t) is the non-fluctuating mean fluid velocity, and

〈
Ui(x

1, x2, x3, t)
〉

= δjk

〈
∂ξj

∂xi
∂ξk

∂t

〉
+ δimu

m(x1, x2, x3, t) + δjk

〈
∂ξj

∂xi
∂ξk

∂xm

〉
um(x1, x2, x3, t).

(15)
This system is complemented with the continuity equation for the average mass density:

∂〈ρ〉
∂t

+∇ · (〈ρ〉u) = 0, (16)

where 〈
ρ(x1, x2, x3, t)

〉
=

〈
det

(
δij +

∂ξi

∂xj

)〉
.

IV. LOOKING FORWARD: CAN WE MODEL TURBULENCE WITH THE HEL

APPROACH?

Is the HEL model with its fluctuating coordinates a good approach to the turbulent fluctua-
tions, so-called E-turbulence? I do not know if this question has been discussed in detail. But I
can only guess that McIntyre, Soward and Holm have thought about it.

The inclusion of dissipation in the model is possible but requires the introduction of extra
technical concepts. We avoid this extra complexity and see what we can conclude about the
dynamics at ‘inertial-range’ scales, where dissipation is not too important so we can keep using
Euler rather than Navier-Stokes.

First we notice that the average quantities appearing in equations (14)–(16) depend on
moments of the fluctuations ξi(x1, x2, x3, t), and these moments are unknown. The question is:
can we measure these moments? I do not know if this has been discussed in the literature, but I
think it could be a good idea to try and relate these moments to measurements, say, of structure
functions, average particle lengths, average particle distances, etc.

A second remark is that if we think of the averaged coordinates xi, as the coordinates of the
averaged position of a particle, then the equation of motion for these “averaged” trajectories is

d

dt
X i(t) = ui(X1(t), X2(t), X3(t), t) , i = 1, 2, 3,

where ui is the mean velocity field, a non-fluctuating function of its arguments. As discussed
by Arkady Tsinober, even for simple velocity fields ui(x1, x2, x3, t) such as the ABC flow or the
Lorenz system, the solutions of these equations of motion give rise to complicated trajectories,
typically of chaotic nature. So the observation is that even though we have “eliminated the
E-turbulence” by moving to the non-fluctuating coordinate system, the “purely Lagrangian”
turbulence (or L-turbulence) has remained. I think this is a good feature of the model, and
sheds some light on one of the questions in the discussion session on Thursday.
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V. HOLM’S EULER-α AND NAVIER-STOKES-α MODELS

We depart a little bit from the historical construction of this model, and look at it from the
point of view of the HEL construction. Consider equation (14) but with 〈U〉 replaced by some
other momentum field V, to be defined later:

∂

∂t
V + LuV = −∇P , (17)

where u ≡ u(x1, x2, x3, t) is the non-fluctuating mean fluid velocity which is assumed incom-
pressible: ∇ · u = 0. Of course this incompressibility assumption is not in good agreement with
the continuity equation (16), unless the mass density ρ is set to constant and uniform.

Notice that irrespective of the choice for the momentum field V, a Kelvin’s circulation theorem
should hold:

d

dt

∮
C(t)

V · dx = 0 ,

where C(t) is any closed loop that is advected by the velocity field u.
The crucial aspect of the Euler-α model is the relation between V and u :

Vi ≡ δij
(
ui − α4ui

)
,

where α > 0 is a constant and 4 is the usual Laplacian in Cartesian coordinates.
So as a PDE system the Euler-α model is simply

∂

∂t
(u− α4u) + u · ∇ (u− α4u)− α(4uj)∇uj = −∇p ,

∇ · u = 0 .

Obviously, in the limit α→ 0 we recover the usual 3D Euler equations.
Correspondingly, the Navier-Stokes-α model is

∂

∂t
(u− α4u) + u · ∇ (u− α4u)− α(4uj)∇uj = −∇p+ ν4 (u− α4u) ,

∇ · u = 0 ,

where ν > 0 is the viscosity.
It is perhaps worth to mention that, unlike the HEL approach, there is no derivation of the

Euler-α model from first principles starting from 3D Euler. There exists in the literature an
attempt of derivation of the model using a technique of averaging of the underlying Hamilton’s
principle, however Soward showed recently that this derivation had a flaw.

In any case, this does not prevent us from using the Euler-α or the Navier-Stokes-α models
as turbulence closure models. This has been done in the literature. The interpretation that has
been successful, is that the parameter α is not an intrinsic property of the fluid, but rather a
flow-regime parameter, which should depend on the Reynolds number. The main advantage of
these α-models is the fact that numerically the number of degrees of freedom needed to resolve
the small scales is lower than in the usual Navier-Stokes case, because the energy spectrum
typically decays faster (as k−3) due to the α term in the equations. See 4 for more details.

Finally we mention that the Euler-α model has its own Hamilton’s principle. In one spatial
dimension, the evolution equations are equivalent to the so-called Camassa-Holm system, which
is an integrable system with soliton-type solutions.

4 C. Foias, D. D. Holm and E. S. Titi, Physica D 152, 505–519 (2001)


