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Big questions:

How can we gauge the effectiveness of a stirrer as a mixer?

How might we parameterize stirring as diffusion?

Outline:
- Models
- Conflicts
- Resolution
- More models

- Reconciliation



Mathematical models of mixing
Given flow field u(x,r) with V-u =0, consider
Stochastic Diff BEq: dX(¢) = u(X,t)dt + 2k dW (¢)

e X(7) is passive tracer particle position

e x1s the molecular diffusion coefficient

Advection - Diffusion Eq: 4.0+ u-VO=kAO+s

* ((x,r) 1s passive scalar density, concentration
e s(x,r)1s passive scalar source-sink distribution

e plus appropriate initial and boundary conditions



Mathematical measures of mixing

Temptation & tradition suggest characterizing

stirring as an "effective" diffusion
i'V-xkA — -9,K79.

Three questions:
e Which aspects of mixing should be encoded in K¢/ ?
* Do different criteria produce different K</ ?

e Transferable among applications?



Mathematical measures of mixing

Measure 1: K° =K;ﬁ

Measure 2: K'* = K¥

. VR _ __eff _
Measure 3: K " =K for p = +1,0, -1

p=+1,0,-1~ “small”, “intermediate”, or “large” scale variance reduction



Mathematical measures of mixing

Measure 1: K™ =K’
via tracer particle dispersion
E{(Xl.(t) - X,(0)(X,(n-X j(()))} ~ 2KIt

as [ — oo,



Mathematical measures of mixing

Measure 2: K" =K

via flux - gradient relation, 7=-Gx + 0 =
3,0 +1i- VO =KkA0 +G(i - ii)
everything mean zero & periodic on a cell =

(IVOF)
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Mathematical measures of mixing

Measure 3: k" =k

via concentration variance reduction

For s(x) mean 0 and 4,0+ u- VO =kA0 + s(xX)




Mathematical measures of mixing

R
Wottiveate Measure 3(a): k)" =k
via concentration (inverse) gradient variance reduction

For s(x) mean 0 and d,0+ u- VO =kA0 + s(X)

s
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Mathematical measures of mixing

PD e 1
Measure 1: K =Kl-jﬂ NZE{(Xi(t)_Xi(o))(Xj(t)_Xj(O))}

(IVOT)

Measure 2: K™ =K% =k|1+

G2
([vard)
Measure 3: k" =k = <‘ ‘2 for p=+1,0,-1
T



Strength of stirring

4

Dimensionless Péclet number: Pe = Q
K

U ~ velocity scale ... {~ length scale

Dimensionless Enhancement or Efficacy factor:

VR PD.FG
K

K
E(Pe) = X or
K K




Fact:

In terms of tracer dispersion or flux-gradient relation, there are
flows for which the enhancement may be as large as
KFG

E(Pe)=—— ~Pe” as Pe — .
K

Fact:

In terms of concentration variance reduction in presence of steady
sources & sinks the enhancement cannot be that big.

N \.
e &4’\
Theorem: E(Pe)=—<Pe' as Pe — . . AL

K \
N\ X
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Resolution

 What length scale £ is used in Pe = Ul/k?

KFG
In examples where —— ~ Pe” as Pe — oo,
K
Pe = Uéﬂ o
K
VR
KP

In theorem where E(Pe) = < Pe' as Pe — «,

K

Ul

X flow .
K

{ {
Pe = U source =( source

K 4 flow




Example: Basic Two-scale Model

A single-scale flow stirring a single-scale source-sink distribution

u(x) = ?\/EUsinkuy . s(x) = \/ESsinksx

U { k
Two parameters: Pe= — and r = 2%« = L

Kk

u flow S



Dispersion/Flux-gradient mixing measure

e ak.a. Homogenization Theory (HT) ...

e ... presumably good forr =k, /k >>1:

FG
°

= 1+Pe> = HT approximation is

K
d*0...(x) 2 Ssink x
o=k LDy g0 - 2SS
<(A‘1s)2> <\vﬂA—1sf>
HT appx of k" = = = k(1+Pe?)
92 4 2
V < HT> V <‘V HHT‘ >
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Exact solution (for r=1)
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High-Pe (fixed r) asymptotic analysis: Internal-layer theory (ILT)

— 1 VR/1c ~ 7716 P 5/6
E, = Kk,"’/k ~r""° Pe
_ 12 Pall2
E. =k RIKk~r'+Pe

E =k Y’k ~rPe
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vme= HT: 14P&? s
e ILT:r®P® | 7
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Stirring strength—scale separation phase diagram

r>>1

r<<i

Pe<<1 1 Pe >>1 Pe



Stirring strength—scale separation phase diagram

r>>1

r<<i

Pe<<1 1 Pe>>1 Pe



Stirring strength—scale separation phase diagram

r>>1

r<<i

ILT:
Pe>>1
r<Pe

Pe << 1 1 Pe>>1 Pe



Outline

e Models
e Conflicts
e Resolution
e More models

e Reconciliation



Questions:

e HT fails to predict the scalar variance sustained by
steady sources & sinks when Pe >r>> 1. Why?

e Can information about particle dispersion predict
variance supression at high Péclet numbers?



* Particle dispersion is time and initial-location dependent ...

E{(Xi(t)—Xi(O))(X (-X j(O))} ~ 2Kt
0
K (:X(0)) = %%E{(Xi(t)—Xi(O))(Xj(t)—Xj(O))}

e KPP~ kPe?= O(k!) takes ©(¢,  2/k) time to develop

. ¢?
..but K;7(#;X(0)) ~x+U’t (at most) for ¢ << ﬂ‘)%.



[ A1+Pe]

Effective diffusion K, P (t,y,) vs. time
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More modeling

Concentration variance for stirred scalars sustained by
inhomogeneous sources and sinks 1s dominated by the
“latest” stuff introduced or deleted from the system.

“Old” particles are relatively well mixed and so don’ t
contribute substantially to the observed variance.

Variance supression is controlled by particle dispersion rate
on relatively short, rather than long, time scales at high Pe.

In the presence of sustainted sources & sinks, even as t —
we cannot neglect transient behavior of K*P ..,



Dispersion-diffusion theory (DDT)

Given a stirring flow u(x,r) and its associated K;"P (¢-1y1x,, 7)),
density due to stuff injected at x,, , may best be described by
0,0(X,1 1 X,t)) = K" (t =1, 1%,,t)3 .0
limp(x,t1Xx,,t,) =0(x,t1Xx,)

t}

G. K. Batchelor, Diffusion in a field of homogeneous turbulence 1. Eulerian analysis, Aust. J. Sci. Res. Series A, Phys. Sci., 2 (1949), 437-450.

Then the total density in presence of sources and

sinks 1s at best described by

Oy (5.1 = [ dt, [ d% p(F.11%,.,1,)s(%,.1,)

... which does not satisfy an inhomogeneous diffusion equation!



On a periodic domain [0,L]¢

s s 1 .7 Py - f ! s !
p(x,t1Xx,,t,) = erxp{zk (X =X,) - kikjthgD(t —t, | xo,to)dt}
k 0

Note: if K.~ ~ [K+ Uz(t—to)] 6, as t—t,—>0, then

I

Oopr (X1 = [ dty [ dF (3t 150,t,)s(%y)
J
éDDT (l_{)) - g(l_c')f:e—xkzr—%szzrsz

s A - 3(’% VR _ <(A_ls)2>
= as Pe — oo, GDDT(k)Nﬁ SO K, = (55 ~ Ul .




Reconciliation

e $64 question: Is DDT quantitatively accurate?

e For single-scale flow stirring single-scale source ...



= = Exact
— DDT
| v HT: 14P€2

..............................................................................................




More reconciliation

e DDT respects the rigorous bounds on x,'R.

* For the single-scale source, the rigorous bound is

E(Pe) = kR /K< [1+r2Pe?]V? ~ rPe ...

... for large r or for large Pe!

e Plot E(Pe) as a function of (rPe):
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Reconciliation, continued

e How does DDT perform for variance supression at

large & small scales, i.e., for k, 'K ?



- = Exact Efficacy
- DDT Efficacy

—— HT Efficacy 1+Pe?

10’

I LI L I IIIIIIII

'6' 103

I IIIIIIII I L

| ”'””i“ 10°
U
Pe_KT

u

r =106
r=10°
r=10%
r=103
r=10?

r=10!



1012

101Q”

- =« Exact Efficacy
- DDT Efficacy

—— HT Efficacy 1+Pe?| . ./~

108_mmmmmmﬁmmmmmm}mmmmmfmmmmmmgmmmmmm

106_mmmmmmfmmmmmm

104_mmmmmmf

102~

100/

I LU

101

102 10

10
U

Pe—Kk

10

r=10°6
r=103
r=10*
r=103
r=102
r=10!



Density pictures (r = 562)
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Stirring strength—scale separation phase diagram

r>>1

r<<i

ILT:
Pe>>1
rzPe

Pe<<1 1 Pe>>1 Pe

DDT approximation for k" is uniformly accurate



Conjecture (potential application)

Single-scale source, sink & stirring is a special scenario ...

... what about real turbulent mixing?

DDT hints how particle dispersion data may predict steady
state source-sink sustained variance suppression.

 Homogeneous isotropic turbulence —

E[(X(0)-X0)(X,()-X,0)] = 2Kkt + U +Crer’+ ..) 5

... w/turbulent energy dissipation rate per unit mass € ~ U°/{,,,, .



On a periodic domain [0,L]¢

vl ~1 (T T 172 2 2
p(x,tlxo,t0)~F;exp{zk (X—Xy)— 5k [2K(t—t0)+U (t—1,) +]}
Ooor (5.1) = [ty [ dX,p(F,11%,,8,)(5,)

J

B (k)= 50) [ YT dr

Ut, .
= as Pe=—" — o at fixed r=—2<«
K Zﬂow
s (k )
DDT (k)

kU



Concrete conjecture:

Does Statistically Homogeneous
Isotropic Turbulence saturate

the upper bound on E (Pe)?

k" approximated by k= <(<221S);> ~ krPe <
/4
- e

i.e., "mixing length" ~ £

source



U!

= as Pe=—72 —» o at fixed rzésoﬂ,
K Zﬂow
S(k)
k
DDT( ) kU

Source Distribution DDT Turbulence Reqular Diffusion




Last words

Different definitions of effective diffusion may indeed
yield different effective diffusivities.

We cannot generally use long-time transient dispersion
results for source-sink problems.

There may not be an effective diffusion equation to
describe source-sink stirring.

Flux-gradient model does not contain all the relevant
information for source-sink stirring.

Transient mixing and source-sink stirring are different
phenomena using different features of the flow:
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Scalar source-sink stirring 1s all about transport
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Dynamics of probability density functions for decaying passive scalars
in periodic velocity fields

Roberto Camassa, Neil Martinsen-Burrell, and Richard M. McLaughlin
Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599, USA

Transient mixing is all about
shearing, stretching & straining



THE END



