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What are we doing ?
Numerical Methods

FlareLab

Vlasov Simulations Turbulence



3 short stories

‣Euler eqns.

‣Exact relations between Euler and Lagrangian 

‣Conditional statistics
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no definite 
answer yet

democracy 
doesn’t help

Aussois: 250 Euler equations



Some results for Navier-Stokes

Leray (1934):

⇤ global solution in d = 2

Leray (1934):

if ⇤ singularity, then ⌅u⌅L� ⇥ C [�/(t� � t)]1/2

Ca�areli, Kohn, Nirenberg (1982):

⌅⇥⌅L� ⇥ C/(t� � t)

Sche�er (1978), Ca�areli, Kohn, Nirenberg (1982):

space-time-dimension (Hausdor�)
of the singular set < 1.



Condition I: If ⇤ T

0

dt

�⇤
|�|2 d3x

⇥2

<⇥

then the solution is smooth for 0 < t � T .

Known: Any Leray weak solution satisfies
⇤ T

0

dt

⇤
|�|2 d3x <⇥

Condition II: If ⇤ T

0
dt

�⇤
|u|p d3x

⇥2/(p�3)

<⇥

for some p, 3 < p � ⇥ then the solution is smooth for 0 < t � T .

Known: ⇤ T

0
dt

�⇤
|u|p d3x

⇥4/(3(p�2))

<⇥

for 2 � p � 6.



Condition III: If
⇤ T

0

dt

�⇤
|⌅�|2 d3x

⇥2/3

<⇥

then the solution is smooth for 0 < t � T .

Known: ⇤ T

0

dt

�⇤
|⌅�|2 d3x

⇥1/3

<⇥



Navier-Stokes:

⇥tu+ u ·⇥u+⇥p = ��u

=�

⇥tu+ P [u ·⇥u] = ��u ,

where P is projection-operator on divergence free part.

=�

⇥tv + P [v] ·⇥P [v] = ��v ,

with u = P [v]

note: v is compressible



Burgers:
⇥tv + v ·⇥v = ��v

Grafke, Grauer, Sideris:
global existence + infinite # of conserved quantities

Navier-Stokes:

⇥tv + P [v] ·�P [v] = ��v

in-between:

⇥tv + P [v] ·�v = ��v



Lagrangian
Turbulence

Eulerian turbulence
K41
Structures
Decorrelated turbu...
MHD
Locality
Instantons
What do we have ?

What is known ...
Existence theory ...
Search for singularities

Numerical Results
Vortex sheet
Pelz initial conditions

AMR codes
Racoon

Lagrangian turbu...
Multifractals
Lagrangian multi...
Numerics
Decorrelated ...
Static turbulence

Existence theory for the Euler equations

⌅tu + u · ⌦u + ⌦p = 0 , r ⇧ Rd , d = 2, 3

⌦ · u = 0

u(0, r) = u0(r) ⇧ Hs(R)

Beale–Kato–Majda (1984): ⌃ a global solution for d = 3, s ⇤ 3

u = C ([0,⌅];Hs) ⌥ C 1([0,⌅];Hs�1)

i� for the vorticity � = ⌦⇥ u holds

� T

0

 �(t, ·) L�dt < ⌅

for every T > 0.
(Similar statements for MHD and quasigeostrophic flow.)

Kato (1972): It exists a global solution for d = 2, s ⇤ 3

||�(t, ·) L� = ||�(0, ·) L� .
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Constantin, Fe�erman, Majda (1996): If vorticity vector

�(x, t) =
⇥(x, t)
⇤⇥(x, t)⇤

is smoothly directed in an O(1) region, i.e. the maximum norm of
⌅� is L2 integrable in time from 0 to T in that region, and the
maximum norm of velocity in this region is uniformly bounded,
then no blow-up up exists up to time T .

Cordoba, Fe�erman (2001):
Vortex tubes with O(1) length that don’t twist or bend enough are
ruled out if the infinity norm of velocity in a neighborhood of that
region is integrable in time.

Cordoba, Fe�erman (2001):
If a current sheet has a potato chip like structure and� �

0
subx⇥U |u(x, t)| dt <� than no blow-up.



Deng, Hou, Yu (2005, 2006)

Theorem 1, Theorem II will be discussed later



racoon:

Hilbert curves: Quadtree (2D), Octtree (3D)

really adaptive computations using object oriented numerics

Dreher, Grafke, Grauer



distribution and load balancing: Hilbert-type space filling curve
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distribution and load balancing: Hilbert-type space filling curve



distribution and load balancing: Hilbert-type space filling curve
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Pelz initial conditions     resolution on JUMP (FZ Jülich): 40963

symmetry breaking keeping symmetry artificially
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Volume rendering of vorticity at time 0.57
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isosurface 70%, zoom
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DHY Theorem 1

Let x(t) be a family of points such that |!(x(t), t)| is comparable to ⌦(t). Assume

that for all t 2 [0,T ) there is another point y(t) on the same vortex line as x(t),

such that the direction of vorticity ⇠(x , t) = !(x , t)/|!(x , t)| along the vortex line

between x(t) and y(t) is well-defined. If we further assume that

�����

Z
y(t)

x(t)
(r · ⇠) (s, t) ds

�����  C

for some absolute constant C, and

Z
T

0
|!(y(t), t)| dt < 1; ,

then there will be no blowup up to time T .

x(t)

y(t)

What to take as x(t)?

Answer: Location of ⌦(t)

What to take as y(t)?

Answer: Choose y(t) such that C is constant in time.

This leads to the question: Does y(t) approach x(t)?
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This leads to the question: Does y(t) approach x(t)?

Answer (from numerics) for Pelz-like initial conditions: No



Citation from Deng, Hou, Yu (2006):

“Let us take the point x(t) to be the point insinde one tube where the maximum

vorticity is attained, and y(t) to be a point on the same vortex line, but outside the

tube. It is easy to check that within this inner region, condition (2.1) is satisfied.

By Theorem 1 we see that if the maximum vorticity outside these small tubes is

integrable in time, then there is no blowup inside the tubes. It is likely that the

maximum vorticity outside these small tubes has a growth rate smaller than that

inside these small regions. This casts doubt on the validity of Pelz’s claim..”
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It’s not that easy:

in the outer region vorticity

looks harmless but it isn’t

Conclusion:

Theorem 1 does not rule out

Pelz singularity

(but whole vortex line must blow up)



Deng, Hou, Yu (2006) Theorem 2

Assume there is a family of vortex line segments L

t

and T0 2 [0,T ), such that
L

t2 ✓ X (L
t1 , t1, t2) for all T0 < t1 < t2 < T . We also assume that ⌦(t) is

monotonically increasing and k!(t)k
L

1(L
t

) � c0⌦(t) for some c0 > 0 when t is
su�ciently close to T . Furthermore, we assume that

• U⇠(t) + U

n

(t)M(t)L(t) . (T � t)�A for some A 2 (0, 1)

• M(t)L(t)  C0,

• L(t) & (T � t)B for some B < 1� A.

Then there will be no blowup in the 3D incompressible Euler flow up to time T.

Here L(t) is the arc length of L
t

and

U⇠(t) = max
x ,y2L

t

|(u · ⇠)(x , t)� (u · ⇠)(y , t)|

U

n

(t) = max
L

t

|u · n|

M(t) = max(kr · ⇠k
L

1(L
t

), kkL1(L
t

)) .

where  and n are the curvature and the unit normal vector of L
t

, respectively.



Which vortex line to choose ?

Answer:
Using the “back-to-labels” map obtained via the tracers it is possible to follow the
vortex line that will contain the maximum ⌦(x , t) at a late time.

How to choose the length ?

Answer:
The critical length is such that M(t)L(t) is constant.
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Observation (from numerics):

Our observations confirm uncritical scaling of length because curvature and r · ⇠
are well behaved on vortex line segment.



Only chance for finite time singularity:
velocity blows up like 1/(t⇤ � t)

but it doesn’t !!!

Conclusion: no finite time blowup in Pelz like initial condition
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Questions and wish list:

i) What is the distance to the finite time singularity?
If t � t⇤ = O(1) you are in trouble?

ii) Check, whether resolution is su�cient?
a) analyticity strip method
b) redo with di↵erent resolutions

iii) Locations of max. vorticity and max. strain must converge !

iv) Do not plot 1/||!||1 !

v) Agree on initial conditions !

vi) Talk to the mathematicians !

vii) Try to understand the flow:
what is the local (self-induction) and what is background strain?
(see P. E. Hamlington, J. Schumacher, and W. J. A. Dahm, Phys. Fluids 20
(2008) 111703)



Eulerian versus Lagrangian description

Lagrangian description: pressure and dissipation

Recent fluid deformation closure (RFD):

dAij =

�
C�1

ij

AnmAmn

C�1
kk

�AikAkj �Aij
C�1

mm

3T

⇥
dt + dWij

with D�1
ij =

⌅Xi

⌅xj
and Cauchy-Green tensor Cij = DikDkj ⇤ exp(⇤A)exp(⇤AT ),

Kolmogorov time ⇤ ⇥
⇤

⇥

�
, Gaussian stochastic forcing dW.

Viellefosse (1984), Chertkov, Pumir & Shraiman (1999), Chevillard & Meneveau (2006)
Gibbon (2002), Gibbon, Holm, Kerr & Roulstone (2006), Gibbon & Holm (2007)

Velocity gradients: taking the gradient of the Navier-Stokes equations yields

dAij

dt
+AikAkj = �⇥ijp + ��Aij

with
dAij

dt
=

⇥Aij

⇥t
+ uk⇥kAij and Aij = �ui

�xj
.



Eulerian versus Lagrangian description
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⇥
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Lagrangian turbulence
Eulerian description

⇤tu(x, t) = . . .

Lagrangian description

⇤tX(t, y) = u(X(t, y), t) X(0, y) = y

⇤tu(X(t, y), t) = . . .

Experiments
A. La Porta et al (2000) Cornell
N. Mordant et al (2001) Lyon

Theory:
R. Friedrich (2003) Münster
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Lagrangian turbulence
Eulerian description

⇤tu(x, t) = . . .

Lagrangian description

⇤tX(t, y) = u(X(t, y), t) X(0, y) = y

⇤tu(X(t, y), t) = . . .

Experiments
A. La Porta et al (2000) Cornell
N. Mordant et al (2001) Lyon

Theory:
R. Friedrich (2003) Münster

Ott, Mann (2000)
La Porta,  Voth, Crawford, Alexander, Bodenschatz (2001)
Mordant, Metz, Michel, Pinton (2001)



Lagrangian multifractals

‣Chevillard, Roux, Leveque, Mordant, Pinton, Arneodo (2003)

‣Biferale, Bofetta, Celani, Devinish, Lanotte, Toschi (2004)

‣Yakhot (2008)
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Lagrangian multifractals
Biferale et al (2004): Take She-Leveque model

⇥E (p) =
p

9
+ 2

⇧
1�

�
2

3

⇥p/3
⌃

Legrende transformation to obtain singularity spectrum:

D(h) = infp (ph + 3� ⇥E (p))

= 1 + p⇥(h)

�
h � 1

9

⇥
+ 2

�
2

3

⇥p�(h)/3

with

p⇥(h) =
3

ln(2/3)
ln

⇤
(1� 9h)

6 ln(2/3)

⌅

Assumptions:

��v ⇥ �lu with ⇤l ⇥ l/�lu

=⇤ ⇤ ⇥ Lh
0

u0
l1�h

Borgas 1993 



Lagrangian
Turbulence

Eulerian turbulence
K41
Structures
Decorrelated turbu...
MHD
Locality
Instantons
What do we have ?

What is known ...
Existence theory ...
Search for singularities

Numerical Results
Vortex sheet
Pelz initial conditions

AMR codes
Racoon

Lagrangian turbu...
Multifractals
Lagrangian multi...
Numerics
Decorrelated ...
Static turbulence

Frisch-Parisi for Lagrangian structure functions:

Sp(⇤) ⇥ up
0

⇤

h�I
dµ(h)

�
⇤

TL

⇥ hp+3�D(h)
1�h

Saddle point approximation for ⇤ ⇤ TL:

�L(p) = infh

�
hp + 3� D(h)

1� h

⇥

MHD works similar:

just start with the MHD Eulerian �p

How does theory and numerics compare ?
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Frisch-Parisi for Lagrangian structure functions:
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Numerics

‣ pseudo spectral code
‣ parallel treatment of tracer particles, 2-150 million particles
‣ written in C++

JUMP: slice based
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Numerics

‣ pseudo spectral code, Navier-Stokes: 
‣ parallel treatment of tracer particles, 2-150 million particles
‣ written in C++

JUGENE: column based
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BlueGene: look at 
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3

!λ urms εk ν dx η τη L TL N3 Np

460 0.189 3.6 · 10−3 2.5 · 10−5 3.07 · 10−3 1.45 · 10−3 0.083 1.85 9.9 20483 107

TABLE I. Parameters of the numerical simulations. !λ =
√

15V L/ν: Taylor-Reynolds number, urms: root-mean-square

velocity, εk: mean kinetic energy dissipation rate, ν: kinematic viscosity, dx: grid-spacing, η = (ν3/εk)
1/4: Kolmogorov

dissipation length scale, τη = (ν/εk)
1/2: Kolmogorov time scale, L = (2/3E)3/2/εk: integral scale, TL = L/urms: large-eddy

turnover time, N3: number of collocation points, Np: number of tracer particles.
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FIG. 3. Flatness factors for conditioned velocity incre-
ment PDFs P (δ||l u|εl), P (δ||u |Ωl), P (δ||u |∆l) and unconditioned
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third order structure function S||
3

For comparison we conditioned the velocity increments
on other quantities composed of velocity-gradient tensor
elements, namely the vorticity ω = ∇×u and the longi-
tudinal gradient l̂ ·∇u. As for the energy dissipation rate
we consider spatial averages of the square of vorticity

Ωl =
1

l

∫ l

0

ds ν|ω(x+ s l̂)|2. (10)

and the square of the longitudinal gradient

∆||
l =

1

l

∫ l

0

ds ν|l̂ ·∇u(x+ s l̂)|2. (11)

From Fig. 3 one recognizes that the flatness of

P (δ||l u|εl) is closer to a Gaussian distribution over all

scales than P (δ||l u|Ωl) or P (δ||l u|∆l). It is interesting to
remark that the integral of the longitudinal gradient over
l is the longitudinal increment. That the energy dissipa-
tion rate εl nevertheless works better than this longitudi-
nal gradient implies that correlations of the form ∂jui∂iuj

with i #= j are essential in the condition and in the RSH
(2).
The flatness of the PDFs conditioned to the scale-

averaged energy dissipation rate come closest to the
Gaussian value. However, from Fig. 4 one observes that
the PDFs conditioned on Ωl are nearly scale-invariant,
too.
Therefore, there are only minor difference between

the energy-dissipation or vorticity conditioned statistics.
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FIG. 4. Conditioned PDFs P (δ||l u|Ωl) for different separa-
tions l in comparison to a Gaussian distribution, normalized
to unit variance

With respect to the slightly smaller flatness of the for-
mer one can conclude that longitudinal increment statis-
tics is coupled more closely to the scale averaged energy
dissipation rate than to the vorticity. This is important
for divers models as for example the She and Lévêque
model21, where physical reasoning is based on the one
hand on the energy dissipation rate and the RSH and
on the other hand on the dimensionality of the coherent
structures of vorticity. This question is also closely re-
lated to the issue of different scaling laws for longitudinal
and transverse structure functions as we will explain in
the next section.

We conclude this section on longitudinal increments
by an examination of the corresponding structure func-
tions Sp,εl . From the scale-invariant PDFs in Fig. 3 we
expect them to follow the linear K41-scaling law within
the inertial range. Indeed, as shown in Fig. 5, the con-
ditioned structure functions follow Kolmogorov’s predic-
tion while the integrated higher-order functions exhibit
lower plateaus expressed by a non-zero µp in (1).

B. Transverse increments

In analogy to the RSH for the longitudinal veloc-
ity increments Chen et al.22 proposed a refined self-
similarity hypothesis for the transverse velocity incre-
ments (RSHT). This relation of the scale-averaged square
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Two open problems:

‣missing monotonicity in relating Eulerian to Lagrangian turbulence

‣ 2D Navier-Stokes: no Eulerian but Lagrangian intermittency

2D numerics (Kamps, Friedrich 2007)
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FIG. 2: Rescaled pdfs of the Eulerian velocity increments for
the distances r = 0.08, 0.1, 0.2, 0.6. For comparison a Gaus-
sian pdf is shown. Small deviations from Gaussianity exist
and can be quantified by the moments [6].

results are obtained using the forcing with the rapidly
decaying spatial correlation.

Eulerian statistics In order to check the parameters for
the numerical integration, we first analyze the Eule-
rian velocity field. Fig.1 shows the energy spectrum for
both kinds of forcing together with a line showing the
K41-scaling k−5/3. For a stationary velocity field, the
longitudinal Eulerian velocity increments are defined as
δve(x, r) = δve(x, r) · r̂ with δve(x, r) = u(x+r)−u(x)
and r̂ = r/r. If we additionally assume isotropy and ho-
mogeneity of the flow, we can write δve(x, r) = δve(r).
The pdfs p(δve(r)) are scaled to unit standart deviation
by σp(δve(r)/σ) with σ = 〈δve(r)〉1/2. Fig.2 shows the
rescaled pdfs for different r. The shape does not vary
with r and hence the pdfs are self-similar. This is in
agreement with experimental [8] and numerical [6] stud-
ies and leads to the conclusion that intermittency is ab-
sent in the inverse energy cascade as far as the Eulerian
increments are concerned.

Lagrangian velocity statistics In the Lagrangian frame of
reference the velocities are recorded along the trajecto-
ries of tracer particles v(y, t) = [u(x, t)]x=X(y,t) , where
y is the starting position of the tracer and X(y, t) is
its current position. Velocity fluctuations are character-
ized by the pdfs of the Lagrangian velocity increments
δvi(τ) = vi(t+τ)−vi(t) with i = x1, x2. Due to isotropy
we average with respect to both spatial components.
Therefore in the following the Lagrangian velocity incre-
ment will be denoted as δv(τ). The moments of p(δv(τ))
are known as the structure functions Sp(τ) = 〈δv(τ)p〉.
Fig.3 shows pdfs of the Lagrangian velocity increments
for several time lags τ . For time lags of the order of TI ,
the pdfs are close to a Gaussian distribution whereas for
small τ the pdfs show large tails. A rescaling of the dis-
tribution functions resulting in a collapse to a universal
distribution is not possible. Accordingly, classical Kol-
mogorov scaling can not be observed in the Lagrangian
frame in contrast to the Eulerian case. Deviations from
the Gaussian shape can be quantified by the compen-
sated cumulants λn = cn/σn. The cn are the cumulants
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FIG. 3: Rescaled pdfs of Lagrangian velocity increments for
the time lags τ = 0.045, 0.09, 0.22, 1.79TI (from outer to inner
curves). The most inner curve is a Gaussian pdf. The pdfs
are vertically shifted.

connected to the characteristic function Ĉ(k) of a pdf by

Ĉ(k) = exp

[

∞
∑

n

cn

n!
(ik)n

]

(2)

and σ2 is the variance (corresponding to c2).
For a Gaussian distribution all λn with an order n

higher than 2 vanish. The compensated cumulants can
easily be computed from the structure functions Sp. For
symmetric pdfs, λ4 = S4/S2

2 − 3 is the excess kur-
tosis and the sixth order normalized cumulant reads
λ6 = (S6 − 15S4S2)/S3

2 + 30.
In Fig.4 we see a log-log plot of λ4 and λ6. The crucial
point is that for a self-similar signal the kurtosis should
be a constant at least in the region where self-similarity
of the pdfs is expected. In our simulations the kurtosis
depends strongly on τ and for intermediate times follows
a power-law as can be seen in Fig.4. This also holds for
λ6 which however decays faster than λ4. As a reference
we plotted two lines following the power laws τ−1.15 and
τ−2.6. During the decay of the cumulants the pdfs con-
verge to the Gaussian shape. In order to investigate the
universality of the observed behavior we used the data
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FIG. 4: Compensated cumulants of order four (lower curve)
and six (upper curve) for 2D turbulence. As a guide for the
eye τ−1.15 and τ−2.6 are shown.
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FIG. 5: Compensated cumulants of order four (lower curve)
and six (upper curve) for 3D turbulence together with τ−1.15

and τ−2.6. The time is given in multiples of the Kolmogorov
time τη.

provided by [3, 9] to calculate the same quantities for
three-dimensional turbulence (see Fig.5). Again scaling
behavior can be detected for intermediate times and for
comparison we added power-laws with the same expo-
nents as in Fig.4. For very small and very large τ the
shape of the compensated cumulants show differences be-
tween 2D and 3D. We devote this to the fact that in 2D
the energy is injected on the small scales and mainly dis-
sipated at the large scales whereas in 3D the situation is
complementary. Again our results give strong evidence
for intermittency in two-dimensional Lagrangian turbu-
lence.

p 1 3 4 5
ζa

p 0.557 ± 0.002 1.267 ± 0.007 1.35 ± 0.018 1.313 ± 0.033
ζb

p 0.557 ± 0.003 1.313 ± 0.008 1.45 ± 0.019 1.588 ± 0.029

TABLE I: ESS scaling exponents for 2D turbulence

Scaling of the Lagrangian structure functions Addi-
tionally to the cumulants, the structure functions are
computed to characterize the pdfs. As no scaling re-
gion is visible for the structure functions we have to rely
on the Extended Self Similarity (ESS) technique [10] in
order to estimate scaling exponents. To apply ESS we
have to use the structure functions for the absolute values
of the velocity increments S∗

p(τ) = 〈|δv(τ)|p〉. Standard
arguments of dimensional analysis lead to the scaling be-
havior S∗

p ∼ τζp with ζp = p/2. The ESS-plot is shown in
Fig.6. Estimating the exponents up to order five in the
spirit of [4] leads to the values ζa

p shown in Tab.I. We
also performed the analysis for larger values of S∗

2 (corre-
sponding to larger τ) [3] resulting in the exponents ζb

p. In
both cases the exponents deviate strongly from the K41
predictions which is in agreement with the observation
that the excess kurtosis is not constant.

Dependence on the forcing To study the effect of the dif-
ferent forcings on Lagrangian observables, we also per-
formed simulations with a forcing limited to a small num-
ber of Fourier modes. In this case, the results for the pdfs
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FIG. 6: ESS plot of S∗

3 (lower curve) and S∗

5 (upper curve).
The lines show the ESS scaling laws with exponents ζa

p (lines
ranging from S∗

2 = 0.04 to S∗

2 = 0.4) and ζb
p (from S∗

2 = 0.015
to S∗

2 = 0.9) obtained by the two fitting procedures (see text).
The dashed lines correspond to the K41 scaling.

(Fig.7) as well as for the cumulants are qualitatively and
quantitatively similar to the situation with short spatial
correlation. This leads to the conclusion that the ob-
served deviation of the Lagrangian pdfs from the K41
prediction is very robust and seems to be independent of
the type of forcing.

Acceleration correlations The path of a Lagrangian tracer
particle starting at the position y is uniquely defined by
the acceleration acting on the particle. The acceleration
is given by the right-hand side of the Navier-Stokes equa-
tion

a(y, t)

= [−∇p(x, t) + ν∆u(x, t) + ∇× f(x, t)]x=X(y,t) ,

(3)

where the pressure p(x, t) is related to the vorticity by
∆p = ∇ · [u × ω] − 1

2∆u2. Besides this fact, the accel-
eration is also of central interest for turbulence model-
ing [11, 12]. Particularly in two dimensions, it is conve-
nient to split up a(x, t) into a component parallel and
a component perpendicular to the current velocity of
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FIG. 7: Rescaled pdfs of Lagrangian velocity increments for
the same time lags as in Fig.3. In this case the forcing was
confined to a small number of Fourier modes.



‣ 2D experiment (Rivera, Ecke)
Eulerian and Lagrangian velocity statistics in weakly forced two-dimensional

turbulence
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(Dated: November 21, 2007)

We present statistics of velocity fluctuations in both the Lagrangian and Eulerian frame for
weakly driven two-dimensional turbulence. We find that simultaneous inverse energy and enstrophy
ranges present in the Lagrangian and Eulerian Fourier spectra are not directly echoed in real-space
moments of velocity di�erence. The spectral ranges, however, do line up very well with ratios of
the real-space moments local exponents, indicating that though the real-space moments are not
scaling “nicely”, the relative behavior of the velocity di�erence probability distribution functions is
changing over very short ranges of length scales. Utilizing this technique we show that the ratios of
the local exponents for Eulerian moments in weak two-dimensional turbulence behave in agreement
with Kolmogorov predictions over the spectrally identified ranges. The Lagrangian local exponent
ratios, however, behave in a di�erent manner compared to their Eulerian counterparts, and deviate
significantly from what would be expected from Kolmogorov predictions.

PACS numbers: abc.123

INTRODUCTION

There are two reference frames that are normally con-
sidered in turbulent fluids: the Eulerian frame and the
Lagrangian frame [1, 2]. The Eulerian frame of mo-
tion is fixed to the laboratory frame where velocities,
pressures and accelerations are fields fixed in space and
varying with time (i.e., the velocity field u(x, t)). This
frame has been used for many classical approaches to
the turbulence problem, including the derivation of the
Karman-Howarth equation and Kolmogorov scaling the-
ory. The Lagrangian frame is fixed to fluid elements as
they are advected by the turbulence. The position of the
Lagrangian fluid element in time is denoted x(t), and
the velocity and acceleration of the element are the first
and second time derivative of the Lagrangian trajectory,
respectively. The Lagrangian velocity at any time for
any trajectory must equal its Eulerian counterpart (i.e.,
u(t) = u(x(t), t)). The Lagrangian frame is a useful
one when considering the mixing of scalars [3–5], such
as a dye, by turbulent motion. The di⌅culties in mak-
ing experimental measurement of Lagrangian trajectories
has made the characterization of Lagrangian turbulence
much less common, with a few results reported for two-
dimensional turbulence [6, 7] and for three-dimensional
turbulent flows [8, 9].

In either the Eulerian or Lagrangian frame, we would
like to characterize the turbulent state by studying the
statistical nature of the velocity fields by measuring, for
example, spectra and moments of velocity di�erences.
We define the Eulerian nth-order moment of longitudi-
nal velocity di�erence as

S(n)(r) ⇤ ⇧((u(x + r)� u(x)) · r)n⌃, (1)

and the Lagrangian nth order moment of velocity di�er-

ence as

D(n)(⇥) ⇤ ⇧|u(t + ⇥)� u(t)|n⌃. (2)

We would like to extract ranges of spatial scales r for
the Eulerian frame and time scales ⇥ for the Lagrangian
frame over which the velocity statistics exhibit scaling
and measure the corresponding scaling exponents. These
exponents are then compared with theoretical prediction,
when such predictions exist.

The moment characterization of the velocity fluctua-
tions of turbulence is a standard procedure in fluid turbu-
lence. Here we follow Frisch [2] with respect to this stan-
dard analysis paradigm. Velocity fluctuation moments
have been experimentally obtained in three-dimensions
for both the Eulerian and Lagrangian frames [9, 10].
Kolmogorov proved that for three-dimensional homoge-
nous isotropic turbulence, S(3)(r) = �4/5�r, where � is
the energy dissipation rate. Using dimensional analy-
sis and the hypothesis of strict self-similarity, one can
then show that S(n)(r) ⌅ (�r)n/3. Subsequent measure-
ments of fluctuations in three-dimensional turbulent flu-
ids demonstrate that strict self-similarity does not hold
in these systems, and that there are significant deviations
from the expected n/3 scaling exponent, especially as r
approaches the viscous dissipation scale and n becomes
large [2]. This deviation is attributed to “intermittency”,
a behavior in the spatial fluctuations of the velocity fields,
characterized by bursts of activity. Intermittency is most
commonly attributed to spatial fluctuations in the energy
dissipation rate, � (note that � was assumed constant
above) [2]. Accounting for this intermittency and the re-
sultant adjustments to the Kolmogorov theory is still an
active area of research.

Intermittency is also a feature of velocity statistics in
the Lagrangian frame of three-dimensional turbulence.
Recent experimental [9] and numerical [11] measurements

7

FIG. 7: The structure functions local exponent for orders 1 � n � 6 normalized by n�(2)/2 for (a) the Eulerian frame and (b)
the Lagrangian frame. The ranges of length (Eulerian) and time (Lagrangian) for the inverse energy regime, determined from
spectra, are denoted by dark bars in the insets. The enstrophy-ranges, likewise determined from spectra, are indicated by light
bars. A range with value of unity for all of the normalized local exponent indicates that the PDF shape is constant.

some stronger conclusions.
The spectrally-identified ranges, which seemed arbi-

trary and did not clearly correspond to any particular
behavior in the real-space statistics, become more trans-
parent. The enstrophy range in the Eulerian statistics
is characterized by a near unity grouping of all the mo-
ments. At the upper-end of the Eulerian enstrophy range
we see a sharp change in the behavior of the exponents
where they begin to deviate from one. This deviation
reaches a peak at the low-end of the inverse energy range
and quickly collapses back to near unity. The conclu-
sion we draw from this behavior is that, in our system,
both the energy and enstrophy range Eulerian velocity
di�erence statistics are tending to behave self-similarly
(i.e., normalized exponents tending to unity). This is in
agreement with earlier observations of the unnormalized
quantities. [13–15]. We speculate, given previous numer-
ical work with more extensive ranges, that the small de-
viation from unity that we observe, in the limit of a long
range well removed from injection e�ects, should settle
down to unity. The average value of the exponent ratio
for both the Eulerian energy and enstrophy ranges for a
range of n is displayed in Fig. 8 as open symbols. A line
marked K41 (for Kolmogorov 1941) indicates self-similar
scaling.

The story is quite di�erent for the Lagrangian results.
The spectral ranges still find support, but in almost ex-
actly the opposite manner: divergences from unity grow
in the energy and enstrophy ranges while being reduced
in the intermediate (injection) range (note that the ver-
tical scales are di�erent between Fig. 7a and b). Indeed,
for the energy range, the maximal deviation from unity
occurs in the center of the range, collapsing back to unity

FIG. 8: The normalized local exponents for the velocity dif-
ference moments averaged over the inverse-energy and direct
enstrophy ranges in both the Eulerian and Lagrangian frame.
Strict self-similarity over a given range would be indicated by
collapse of the moments on the K41 (Kolmogrov 1941) line.

only after the outer scale is reached. This allows us to
speculate that, even in the limit of long ranges, the en-
ergy range will continue to deviate from unity and dis-
play a lack of similarity. Interpretation of what occurs
in the enstrophy range is somewhat more complicated.
There is a deviation from unity, but whether this is a
residual result of a small range and the close proximity
to the injection scale is uncertain. In the limit of a long
range, the majority of the enstrophy range may approach
unity. This would be unsurprising because the spectral



Transition PDFs:

Eulerian increment
u(x, t)� u(y, t)

to new increment
w(y, t) = u(x(y, t), t)� u(y, t)

to Lagrangian velocity increment

v(y, t) = u(x(y, t), t)� u(y, 0)

Kamps, Friedrich, Grauer (2008)



fL(v1, v2; y , t, �) =

�
dv pb(v1|v , v2; y , t, �)fEL(v , v2; y , t, �)

=

�
dv pb(v1|v , v2; y , t, �)

�
dx pa(x |v , v2; y , t, �) fE (v1, v2; x , y , t)

Eulerian fine grained pdf

fE (v1, v2; y , x , t) := ⇥�(u(y , t) � v1) �(u(y + x , t) � v2)⇤

EL fine grained pdf

fEL(v1, v2; y , t, ⇥) := ⇥�(u(y , t�⇥)�v1)

⇤
dx�(x̃(⇥ , y , t)�x) �(u(y , t), t)�v2) �(u(y+x , t)�v1)⇤

Lagrangian fine grained pdf

fL(v1, v2; y , t, ⇥) := ⇥�(u(y , t � ⇥) � v1) �(u(y + x̃(y , ⇥ , t), t) � v2)⇤

=

�⇤
dv�(u(y , t � ⇥) � v1)

⇤
dx�(x̃(⇥ , y , t) � x) �(u(y , t), t) � v) �(u(y + x , t) � v1)

⇥

now use (two times)
P(a, b) = P(a|b)P(b)



introduce velocity increments

u = v2 � v , w = v � v1 =⇥ uL = u + w

assume isotropic, homogeneous, stationary flows

fL(uL; �) =

�
pb(w |u; �)

� �

0
dr pa(r |u; �) fE (u; r)

3

by up. Multiplying f(ul − ue|ue; τ) with pb and integrat-
ing over ue sorts all events where ue + up = ul into the
corresponding bin ul. If up would be zero (as in the case
of frozen turbulence) we would have fl(ul; τ) = f(ue; τ).
Equations (6) and (??) and except from symmetry con-
siderations also equation (7) are independent from the
underlying physics. The difference in the transition be-
havior from one frame of reference to the other for dif-
ferent physical systems should therefore be visible in the
functional form of pa and pb.

Two-dimensional turbulence In this section we want to
estimate numerically the two transition pdfs in (7) for
the case of the inverse energy cascade of two-dimensional
turbulence. The data are taken from a pseudospectral
simulation of the inverse energy cascade in a periodic box
with side length 2π [Zitat]. Recapitulating the derivation
of (6) and (7) we see that we need the velocity at the start
and the end point of a tracer trajectory at the same time
to estimate the transition pdfs. To this end we have to
record the velocity at the starting points of the tracers
additionally to their current position and their current
velocity. In Fig. 1 pa and pb are depicted for τ = 0.09TI

where TI is the Lagrangian integral time scale. We have
chosen this rather small time lag as example because in
this case the deviation of the Lagrangian increment pdf
from a Gaussian is significant. Going along the r-axis of
pa in Fig. 1 for any fixed ue we can see that the tracers
travel different distances during the same time τ which
is a behavior expected for turbulent transport. For small
ue the particles tend to travel shorter distances. Looking
at pa which is also depicted in Fig. 1 we see a strong neg-
ative correlation between ue and up for small ue. Both
quantities tend to inhibit each other in this case. For
larger ue the correlation decreases. For both transition
pdfs we observe that for increasing τ the dependence on
their conditions vanishes.
Now we want to turn to the question how the transi-
tion pdfs transform fe(ue; r) into fl(ul; τ). This process
is depicted in Fig.2. The left part of the figure shows
several examples of fe(ue; r). For small r the pdfs tend
to have significant broader tails than Gaussian distribu-
tions. This is no contradiction to the fact that in 2D one
observes Eulerian pdfs that are close to Gaussian []. In
these cases one looks at the longitudinal velocity incre-
ments and not at the projection on the coordinate axis as
we do here. Applying

∫

drpa(r|ue; τ) (see 7) superposes
different fe(ue; r) which differ in their broadness so that
the new pdf f(ue; τ) has a more triangular shape (middle
of Fig.2). During the second step in (7) up and ue are
added to form ul. The previous described observation
that up and ue tend to inhibit each other for small ue

leads to a stronger weighting of very small ul so that the
new pdf fl(ul; τ) is peaked stronger around zero (right
part of Fig.2). In contrast to that the tails of the dis-
tribution seem not to be influenced very significantly by

 0
 0.05

 0.1
 0.15r -2

-1
 0

 1
 2

ue

 0
 10
 20
 30
 40
 50

pa(r|ue; τ) 

-2
-1

 0
 1

 2
up -2

-1
 0

 1
 2

ue

 0

 1

 2

 3

pb(up|ue; τ) 

up

u
e

r

u
e

FIG. 1: The plot shows pa(r|ue; τ ) (top) and pa(up|ue; τ )
(bottom) for τ = 0.09TI . In the insets the top views of the
repective pdfs are visible

pb(up|ue; τ). This is in agreement with the fact that for
large ue the correlation between ue and ul decreases.

Three-dimensional turbulence To get an impression of
the transition probabilities in three dimensional turbu-
lence we used the data provided by [4, 8] to calculate
the pdf pa(r; τ) =

∫

duepa(r|ue; τ) for different τ . The
result is depicted in Fig. 3. We see that as in the two-
dimensional case for a fixed τ the tracers travel differ-
ent distances. This shows clearly that Eulerian length
and Lagrangian time scales are related in a probabilistic
way and in principle it is not possible to connect them
by a Kolmogorov type relation like τ ∼ r/vr. At this
point it is worth mentioning that in three-dimensional
turbulence pa(r; τ) cannot be fitted with a Gaussian dis-
tribution whereas in two dimensions we observe p(r; τ) ∼
r2 exp(−r2/2σ(τ)). This leads to a very different mixing
of the Eulerian lengt scales in two and three dimensions
and therefore to a different transition between the two
frames of reference. In our example we have choosen
three different τ from the inertial range. From the shape
of the different pa we can conclude that due to the tur-
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ing over ue sorts all events where ue + up = ul into the
corresponding bin ul. If up would be zero (as in the case
of frozen turbulence) we would have fl(ul; τ) = f(ue; τ).
Equations (6) and (??) and except from symmetry con-
siderations also equation (7) are independent from the
underlying physics. The difference in the transition be-
havior from one frame of reference to the other for dif-
ferent physical systems should therefore be visible in the
functional form of pa and pb.

Two-dimensional turbulence In this section we want to
estimate numerically the two transition pdfs in (7) for
the case of the inverse energy cascade of two-dimensional
turbulence. The data are taken from a pseudospectral
simulation of the inverse energy cascade in a periodic box
with side length 2π [Zitat]. Recapitulating the derivation
of (6) and (7) we see that we need the velocity at the start
and the end point of a tracer trajectory at the same time
to estimate the transition pdfs. To this end we have to
record the velocity at the starting points of the tracers
additionally to their current position and their current
velocity. In Fig. 1 pa and pb are depicted for τ = 0.09TI

where TI is the Lagrangian integral time scale. We have
chosen this rather small time lag as example because in
this case the deviation of the Lagrangian increment pdf
from a Gaussian is significant. Going along the r-axis of
pa in Fig. 1 for any fixed ue we can see that the tracers
travel different distances during the same time τ which
is a behavior expected for turbulent transport. For small
ue the particles tend to travel shorter distances. Looking
at pa which is also depicted in Fig. 1 we see a strong neg-
ative correlation between ue and up for small ue. Both
quantities tend to inhibit each other in this case. For
larger ue the correlation decreases. For both transition
pdfs we observe that for increasing τ the dependence on
their conditions vanishes.
Now we want to turn to the question how the transi-
tion pdfs transform fe(ue; r) into fl(ul; τ). This process
is depicted in Fig.2. The left part of the figure shows
several examples of fe(ue; r). For small r the pdfs tend
to have significant broader tails than Gaussian distribu-
tions. This is no contradiction to the fact that in 2D one
observes Eulerian pdfs that are close to Gaussian []. In
these cases one looks at the longitudinal velocity incre-
ments and not at the projection on the coordinate axis as
we do here. Applying

∫

drpa(r|ue; τ) (see 7) superposes
different fe(ue; r) which differ in their broadness so that
the new pdf f(ue; τ) has a more triangular shape (middle
of Fig.2). During the second step in (7) up and ue are
added to form ul. The previous described observation
that up and ue tend to inhibit each other for small ue

leads to a stronger weighting of very small ul so that the
new pdf fl(ul; τ) is peaked stronger around zero (right
part of Fig.2). In contrast to that the tails of the dis-
tribution seem not to be influenced very significantly by

 0
 0.05

 0.1
 0.15r -2

-1
 0

 1
 2

ue

 0
 10
 20
 30
 40
 50

pa(r|ue; τ) 

-2
-1

 0
 1

 2
up -2

-1
 0

 1
 2

ue

 0

 1

 2

 3

pb(up|ue; τ) 

up

u
e

r

u
e

FIG. 1: The plot shows pa(r|ue; τ ) (top) and pa(up|ue; τ )
(bottom) for τ = 0.09TI . In the insets the top views of the
repective pdfs are visible

pb(up|ue; τ). This is in agreement with the fact that for
large ue the correlation between ue and ul decreases.

Three-dimensional turbulence To get an impression of
the transition probabilities in three dimensional turbu-
lence we used the data provided by [4, 8] to calculate
the pdf pa(r; τ) =

∫

duepa(r|ue; τ) for different τ . The
result is depicted in Fig. 3. We see that as in the two-
dimensional case for a fixed τ the tracers travel differ-
ent distances. This shows clearly that Eulerian length
and Lagrangian time scales are related in a probabilistic
way and in principle it is not possible to connect them
by a Kolmogorov type relation like τ ∼ r/vr. At this
point it is worth mentioning that in three-dimensional
turbulence pa(r; τ) cannot be fitted with a Gaussian dis-
tribution whereas in two dimensions we observe p(r; τ) ∼
r2 exp(−r2/2σ(τ)). This leads to a very different mixing
of the Eulerian lengt scales in two and three dimensions
and therefore to a different transition between the two
frames of reference. In our example we have choosen
three different τ from the inertial range. From the shape
of the different pa we can conclude that due to the tur-
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An exact relation between Eulerian and Lagrangian velocity increment statistics
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We present a formal connection between Lagrangian and Eulerian velocity increment distributions
which is applicable to a wide range of turbulent systems ranging from turbulence in incompressible
fluids to magnetohydrodynamic turbulence. For the case of the inverse cascade regime of two-
dimensional turbulence we numerically estimate the transition probabilities involved in this connec-
tion. In this context we are able to directly identify the processes leading to strongly non-Gaussian
statistics for the Lagrangian velocity increments.

PACS numbers: 47.10.ad,47.27.-i,47.27.E-,02.50.Fz

Introduction The relation between Eulerian and La-
grangian statistical quantities is a fundamental question
in turbulence research. It is of crucial interest for the un-
derstanding and modeling of transport and mixing pro-
cesses in a broad range of research fields spanning from
cloud formation in atmospheric physics over the disper-
sion of microorganisms in oceans to research on combus-
tion processes and the understanding of heat transport
in fusion plasmas. The recent possibility to assess the
statistics of Lagrangian velocity increments by experi-
mental means [1, 2] has stimulated investigations of rela-
tions between the Eulerian and the Lagrangian two-point
velocity statistics. Especially, the emergence of intermit-
tency (i.e. the anomalous scaling of the moments of the
velocity increment distributions [3]) in both descriptions
and its interrelationship is of great importance for our
understanding of the spatio-temporal patterns underly-
ing turbulence. A first attempt to relate Eulerian and
Lagrangian statistics has been undertaken by Corrsin [4],
who investigated Eulerian and Lagrangian velocity cor-
relation functions. Recently, the Corrsin approximation
has been reconsidered by [5], where it has become ev-
ident that it is a too crude approximation and cannot
deal with the question of the connection between Eule-
rian and Lagrangian intermittency. Further approaches
to characterize Lagrangian velocity increment statistics
are based on multifractal models [6, 7] which also have
been extended to the dissipation range [8]. In [7] a di-
rect translation of the Eulerian multifractal statistics to
the Lagrangian picture is presented. In this approach
a non-intermittent Eulerian velocity field cannot lead to
Lagrangian intermittency. This statement is in contrast
with the experimental results of Rivera [9], as well as
numerical calculations performed for 2d turbulence [10].
Motivated by this fact we have derived an exact relation
between the Eulerian and the Lagrangian velocity incre-
ment distributions, which allows to study the emergence
of Lagrangian intermittency from a statistical point of
view.

Connecting the increment PDFs The quantities of inter-

est are the Eulerian velocity increments

ue = v(y + x, t) − v(y, t), (1)

where the velocity difference is measured at the time t
between two points that are separated by the distance x,
and the Lagrangian velocity increment

ul = v(y + x̃(y, τ, t), t) − v(y, t − τ). (2)

In the latter case the velocity difference is measured be-
tween two points connected by the distance x̃(y, τ, t)
traveled by a tracer particle during the time interval τ .
In both cases v is defined as the projection v · êi of the
velocity vector on one of the axes (i = x, y, z in 3d and
i = x, y in 2d ) of the coordinate system (see e.g. [12, 13]).
In the case of an isotropic flow the results do not depend
on the chosen axis, however we do not have to make this
assumption yet. Additionally, we define the velocity in-
crement

uel = v(y + x̃(y, τ, t), t) − v(y, t), (3)

which is a mixed Eulerian-Lagrangian quantity because
the points are separated by x̃ but the velocities are mea-
sured at the same time. The properties of this quantity
have been investigated in [14]. Finally, we introduce

up = v(y, t) − v(y, t − τ), (4)

measuring the velocity difference over the time τ at the
starting point of the tracer. Following [15, 16] we define
the so called fine-grained PDF for ue as

f̂e(ve; x, y, t) = δ(ue − ve). (5)

where ue is the random variable and ve is the independent
sample-space variable. The fine-grained PDF describes
the elementary event of finding the value ve given the
measured ue = v(y + x, t) − v(y, t). The relation to the
PDF is determined by

fe(ve; x, y, t) = 〈f̂e(ve; x, y, t)〉, (6)
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FIG. 2: The figure shows the impact of the transition probabilities presented on the Eulerian pdf. The left part of the figure
shows fe(ue; r) for r = 0.06, 0.12, 0.3. These pdfs are transformed into f(ue; τ ) (middle) by the transition pdf presented in the
upper half of Fig. 1. Afterwards f(ue; τ ) is converted into fl(ul; τ ) (right picture) by the second transition pdf from Fig. 1. In
both cases τ = 0.09TI .

bulent transport the Lagrangian inertial range is signifi-
cantly spoiled by contributions from the Eulerian integral
and dissipative lengt scales.

Conclusion and Outlook We presented a straight for-
ward derivation of an exact relation between Eulerian
and Lagrangian two point pdfs. For the example of two-
dimensional forced turbulence we could show how it is
possible to observe strongly non-Gaussian distributions
for the Lagrangian velocity increments. One of the main
mechanisms in this context is the turbulent transport of
the tracers leading to the mixing of statistics from dif-
ferent length scales. In comparison we analyzed data
from simulations of three dimensional turbulence. Sim-
ilar to the two-dimensional case we could see that La-
grangian time and Eulerian length scales are connected
via a transition pdf that vary with the time scale. The
next step is to estimate the transition probabilities for
three-dimensional turbulence or magnetohydrodynamics
to get a deeper undestanding of the influence of the un-
derlying physical mechanisms on the translation process.
In this context the question why intermittency in the
Lagrangian picture is stronger in magnetohydrodynam-
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FIG. 3: The figure shows pa(r; τ ) for τ = 3.5τη , 14τη, 28τη

for three-dimensional turbulence. In the inset pa is depicted
for the two-dimensional case with τ =

ics than in fluid turbulence [5] although the situation is
reversed in the Eulerian picture can be adressed.
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and A. Phys. Rev. Lett. 89, 254502 (2002).
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Mellin transform:

P(�ruE , r) =
1

�ruE

� i⇥

�i⇥
dn SE (n)(�ruE )�n

with SE (n) = AE (n)r�E (n).

inverse Mellin transform:
� ⇥

0
d(�ruE ) (�ruE )nP(�ruE , r) = S(n)

Thus we have
fL(�uL; ⇥) = fE (�uE ; �uE ⇥)

Euler-Lagrange translation:

fL(�uL; ⇥) =

�
d(�uEL) Pb(�uL � �uEL|�uEL; ⇥)

� �

0
dr Pa(r |�uE ; ⇥)fE (�uE ; r)

Borgas ansatz:

Pa(r |�uE ; ⌧) = �(r � �uE ⌧) , Pb(�uL � �uEL|�uEL; ⌧) = �(�uL � �uE )



�L(n � �E (n)) = �E (n)

‣same result as Biferale et al, but much easier formula
‣can prove monotonicity property

Now use the Mellin transformation

fL(�uL; ⇤) =
1

�ruL
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�i⇤
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�E (n)�n

to get the Lagrangian structure functions (inverse Mellin)
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Substitute j ⇥(j) = j � ⇥E (j), dj ⇥ = (1� ⌅j⇥E (j))dj and denote the inverse function
by j(j ⇥). Thus we have
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1�⇥j�E (j)⇤

�E (j) and j ⇥ = j � ⇥E (j) and we obtain for the exponents:



Using the Mellin transform one can show

‣-dependent tilt decreases intermittency
‣-dependent variance increases intermittency
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Conditional Eulerian and Lagrangian PDFs

Gagne, Marchand, Castaing 1994

�(x) = ⇥
�

i ,j

[⇤jui (x) + ⇤iuj(x)]2Energy dissipation:

�||
l u = (u(x + l)� u(x)) · l̂longitudinal increment:

average over scale l: �l =
1

l

� l

0
�(x + s l̂)ds

probability distribution

P(�||
l u|⇥l)

nearly Gaussian from dissipation- up to integral-scale.



other possible conditionings: �l =
1

l

� l

0
ds �|⇥(x + s l̂)|2

longitudinal increments

reach a flatness of approximately three throughout the iner-
tial range of scales.

For comparison we conditioned the velocity increments
on other quantities composed of velocity gradient tensor ele-
ments, namely, the vorticity x ¼ r" u and the longitudinal
gradient l̂ #ru. As for the energy dissipation rate we con-
sider spatial averages of the square of vorticity

Xl ¼
1

l

ðl

0

ds mjxðxþ s l̂Þj2 (9)

and the square of the longitudinal gradient

Djjl ¼
1

l

ðl

0

ds mjl̂ #ruðxþ s l̂Þj2: (10)

From Fig. 3 one recognizes that the flatness of Pðdjjl uj!lÞ is
closer to a Gaussian distribution over all scales than
Pðdjjl ujXlÞ or Pðdjjl ujDlÞ. It is interesting to remark that the in-

tegral of the longitudinal gradient over l is the longitudinal
increment. That the energy dissipation rate !l nevertheless
works better than this longitudinal gradient implies that cor-
relations of the form @jui@iuj with i 6¼ j are essential in the
condition Eq. (3) and in the RSH Eq. (2).

The flatness of the PDFs conditioned to the scale-
averaged energy dissipation rate comes closest to the Gaus-
sian value. However, from Fig. 4 one observes that the PDFs
conditioned on Xl are also nearly scale-invariant at inertial
range scales but not exactly Gaussian.

Whether longitudinal increments are conditioned on the
energy dissipation or vorticity yields quasi-identical results.
With respect to the slightly smaller flatness of the former one
can conclude that longitudinal increment statistics are
coupled more closely to the scale averaged energy dissipa-
tion rate than to the vorticity. This is important for diverse
models such as the She-Lévêque model,26 where physical
reasoning is based on the one hand on the energy dissipation
rate and the RSH and on the other hand on the dimensional-
ity of the coherent structures of vorticity. This question is

FIG. 2. (Color online) Conditioned PDFs Pðdjjl uj!lÞ for different separations
l within the inertial range of scales and the most probable value of !, normal-
ized to unit variance.

FIG. 3. (Color online) Flatness factors for conditioned velocity increment
PDFs Pðdjjl uj!lÞ, Pðdjjl ujXlÞ, Pðdjjl ujDlÞ and the unconditioned PDF Pðdjjl uÞ,
including the logarithmic derivative of the third order structure function Sjj3.
The horizontal line indicates the flatness of a Gaussian distribution.

FIG. 4. (Color online) Conditioned PDFs Pðdjjl ujXlÞ for different separa-
tions l in comparison to a Gaussian distribution, normalized to unit variance.

FIG. 1. (Color online) Conditioned PDFs Pðdjjl uj!lÞ for different space-aver-
aged dissipation rates !l for l ¼ 93g in comparison to a Gaussian distribu-
tion, !l ¼ 1 corresponds to the most probable energy dissipation rate, the
others to multiples of this rate. All PDFs are normalized to unit variance.
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tial range of scales.

For comparison we conditioned the velocity increments
on other quantities composed of velocity gradient tensor ele-
ments, namely, the vorticity x ¼ r" u and the longitudinal
gradient l̂ #ru. As for the energy dissipation rate we con-
sider spatial averages of the square of vorticity

Xl ¼
1

l

ðl

0

ds mjxðxþ s l̂Þj2 (9)

and the square of the longitudinal gradient

Djjl ¼
1

l

ðl

0

ds mjl̂ #ruðxþ s l̂Þj2: (10)

From Fig. 3 one recognizes that the flatness of Pðdjjl uj!lÞ is
closer to a Gaussian distribution over all scales than
Pðdjjl ujXlÞ or Pðdjjl ujDlÞ. It is interesting to remark that the in-

tegral of the longitudinal gradient over l is the longitudinal
increment. That the energy dissipation rate !l nevertheless
works better than this longitudinal gradient implies that cor-
relations of the form @jui@iuj with i 6¼ j are essential in the
condition Eq. (3) and in the RSH Eq. (2).

The flatness of the PDFs conditioned to the scale-
averaged energy dissipation rate comes closest to the Gaus-
sian value. However, from Fig. 4 one observes that the PDFs
conditioned on Xl are also nearly scale-invariant at inertial
range scales but not exactly Gaussian.

Whether longitudinal increments are conditioned on the
energy dissipation or vorticity yields quasi-identical results.
With respect to the slightly smaller flatness of the former one
can conclude that longitudinal increment statistics are
coupled more closely to the scale averaged energy dissipa-
tion rate than to the vorticity. This is important for diverse
models such as the She-Lévêque model,26 where physical
reasoning is based on the one hand on the energy dissipation
rate and the RSH and on the other hand on the dimensional-
ity of the coherent structures of vorticity. This question is

FIG. 2. (Color online) Conditioned PDFs Pðdjjl uj!lÞ for different separations
l within the inertial range of scales and the most probable value of !, normal-
ized to unit variance.

FIG. 3. (Color online) Flatness factors for conditioned velocity increment
PDFs Pðdjjl uj!lÞ, Pðdjjl ujXlÞ, Pðdjjl ujDlÞ and the unconditioned PDF Pðdjjl uÞ,
including the logarithmic derivative of the third order structure function Sjj3.
The horizontal line indicates the flatness of a Gaussian distribution.

FIG. 4. (Color online) Conditioned PDFs Pðdjjl ujXlÞ for different separa-
tions l in comparison to a Gaussian distribution, normalized to unit variance.

FIG. 1. (Color online) Conditioned PDFs Pðdjjl uj!lÞ for different space-aver-
aged dissipation rates !l for l ¼ 93g in comparison to a Gaussian distribu-
tion, !l ¼ 1 corresponds to the most probable energy dissipation rate, the
others to multiples of this rate. All PDFs are normalized to unit variance.
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transversal increments

�l not worse than �l

also closely related to the issue of different scaling laws for
longitudinal and transverse structure functions as we will
explain in the Sec. III B.

We conclude this section on longitudinal increments by
an examination of the corresponding conditioned structure
functions Sp;!l . From the scale-invariant PDFs in Fig. 3 we
expect them to follow the linear K41 scaling law p/3 within
the inertial range. Indeed, as shown in Fig. 5, the conditioned
structure functions follow Kolmogorov’s prediction while
the unconditioned higher-order functions exhibit lower pla-
teaus expressed by a non-zero lp in Eq. (1).

B. Transverse increments

In analogy to the RSH for the longitudinal velocity
increments, Chen et al.27 proposed a refined self-similarity
hypothesis for the transverse velocity increments (RSHT).
This relation of the scale-averaged square of vorticity and
the transverse velocity increments reads

d?l u ¼ b2ðXllÞ
1
3; (11)

where b2 is a statistical variable independent of l and Xl,
given by Eq. (9).

Following Chen et al., it is reasonable to look in the
transverse case at the statistics of velocity increments condi-
tioned to Xl, namely, the PDFs Pðd?l ujXlÞ. They are scale-
invariant and only slightly flatter than Gaussian PDFs (see
Fig. 6). As in the case of longitudinal increments one can
question how other conditions such as the energy dissipation
rate perform compared to Xl. The PDFs conditioned on !l

shown in Fig. 7 seem, apart from statistical fluctuations,
indistinguishable from the PDFs conditioned on the vorticity
Xl. From this point of view it is impossible to conclude
whether !l or Xl is the better condition for the transverse
fluctuations.

In order to make a more precise statement on the differ-
ence between these two conditions it is helpful to look at the
flatness in Fig. 8.

From this we conclude that conditioning to !l or Xl

yields quasi-identical results, and surprisingly Pðd?l uj!lÞ are

FIG. 5. (Color online) Logarithmic derivative of the conditioned (symbols)
and unconditioned (solid lines) longitudinal velocity structure function of
order p¼ 3 and p¼ 6, lines indicate the K41 prediction.

FIG. 6. (Color online) Conditioned PDFs Pðd?l uj!lÞ for different separations
l in comparison to a Gaussian distribution, normalized to unit variance.

FIG. 7. (Color online) Conditioned PDFs Pðd?l ujXlÞ for different separa-
tions l in comparison to a Gaussian distribution, normalized to unit variance.

FIG. 8. (Color online) Flatness factors of the conditioned PDFs Pðd?l ujXlÞ,
Pðd?l uj!lÞ, Pðd?l ujD?l Þ and unconditioned Pðd?l uÞ, including the third order
transverse structure function S?3 .
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also closely related to the issue of different scaling laws for
longitudinal and transverse structure functions as we will
explain in the Sec. III B.

We conclude this section on longitudinal increments by
an examination of the corresponding conditioned structure
functions Sp;!l . From the scale-invariant PDFs in Fig. 3 we
expect them to follow the linear K41 scaling law p/3 within
the inertial range. Indeed, as shown in Fig. 5, the conditioned
structure functions follow Kolmogorov’s prediction while
the unconditioned higher-order functions exhibit lower pla-
teaus expressed by a non-zero lp in Eq. (1).

B. Transverse increments

In analogy to the RSH for the longitudinal velocity
increments, Chen et al.27 proposed a refined self-similarity
hypothesis for the transverse velocity increments (RSHT).
This relation of the scale-averaged square of vorticity and
the transverse velocity increments reads

d?l u ¼ b2ðXllÞ
1
3; (11)

where b2 is a statistical variable independent of l and Xl,
given by Eq. (9).

Following Chen et al., it is reasonable to look in the
transverse case at the statistics of velocity increments condi-
tioned to Xl, namely, the PDFs Pðd?l ujXlÞ. They are scale-
invariant and only slightly flatter than Gaussian PDFs (see
Fig. 6). As in the case of longitudinal increments one can
question how other conditions such as the energy dissipation
rate perform compared to Xl. The PDFs conditioned on !l

shown in Fig. 7 seem, apart from statistical fluctuations,
indistinguishable from the PDFs conditioned on the vorticity
Xl. From this point of view it is impossible to conclude
whether !l or Xl is the better condition for the transverse
fluctuations.

In order to make a more precise statement on the differ-
ence between these two conditions it is helpful to look at the
flatness in Fig. 8.

From this we conclude that conditioning to !l or Xl

yields quasi-identical results, and surprisingly Pðd?l uj!lÞ are

FIG. 5. (Color online) Logarithmic derivative of the conditioned (symbols)
and unconditioned (solid lines) longitudinal velocity structure function of
order p¼ 3 and p¼ 6, lines indicate the K41 prediction.

FIG. 6. (Color online) Conditioned PDFs Pðd?l uj!lÞ for different separations
l in comparison to a Gaussian distribution, normalized to unit variance.

FIG. 7. (Color online) Conditioned PDFs Pðd?l ujXlÞ for different separa-
tions l in comparison to a Gaussian distribution, normalized to unit variance.

FIG. 8. (Color online) Flatness factors of the conditioned PDFs Pðd?l ujXlÞ,
Pðd?l uj!lÞ, Pðd?l ujD?l Þ and unconditioned Pðd?l uÞ, including the third order
transverse structure function S?3 .
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also closely related to the issue of different scaling laws for
longitudinal and transverse structure functions as we will
explain in the Sec. III B.

We conclude this section on longitudinal increments by
an examination of the corresponding conditioned structure
functions Sp;!l . From the scale-invariant PDFs in Fig. 3 we
expect them to follow the linear K41 scaling law p/3 within
the inertial range. Indeed, as shown in Fig. 5, the conditioned
structure functions follow Kolmogorov’s prediction while
the unconditioned higher-order functions exhibit lower pla-
teaus expressed by a non-zero lp in Eq. (1).

B. Transverse increments

In analogy to the RSH for the longitudinal velocity
increments, Chen et al.27 proposed a refined self-similarity
hypothesis for the transverse velocity increments (RSHT).
This relation of the scale-averaged square of vorticity and
the transverse velocity increments reads

d?l u ¼ b2ðXllÞ
1
3; (11)

where b2 is a statistical variable independent of l and Xl,
given by Eq. (9).

Following Chen et al., it is reasonable to look in the
transverse case at the statistics of velocity increments condi-
tioned to Xl, namely, the PDFs Pðd?l ujXlÞ. They are scale-
invariant and only slightly flatter than Gaussian PDFs (see
Fig. 6). As in the case of longitudinal increments one can
question how other conditions such as the energy dissipation
rate perform compared to Xl. The PDFs conditioned on !l

shown in Fig. 7 seem, apart from statistical fluctuations,
indistinguishable from the PDFs conditioned on the vorticity
Xl. From this point of view it is impossible to conclude
whether !l or Xl is the better condition for the transverse
fluctuations.

In order to make a more precise statement on the differ-
ence between these two conditions it is helpful to look at the
flatness in Fig. 8.

From this we conclude that conditioning to !l or Xl

yields quasi-identical results, and surprisingly Pðd?l uj!lÞ are

FIG. 5. (Color online) Logarithmic derivative of the conditioned (symbols)
and unconditioned (solid lines) longitudinal velocity structure function of
order p¼ 3 and p¼ 6, lines indicate the K41 prediction.

FIG. 6. (Color online) Conditioned PDFs Pðd?l uj!lÞ for different separations
l in comparison to a Gaussian distribution, normalized to unit variance.

FIG. 7. (Color online) Conditioned PDFs Pðd?l ujXlÞ for different separa-
tions l in comparison to a Gaussian distribution, normalized to unit variance.

FIG. 8. (Color online) Flatness factors of the conditioned PDFs Pðd?l ujXlÞ,
Pðd?l uj!lÞ, Pðd?l ujD?l Þ and unconditioned Pðd?l uÞ, including the third order
transverse structure function S?3 .
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Lagrangian conditional statistics

5

FIG. 8. Flatness factors of the conditioned PDFs P (δ⊥l u|Ωl),
P (δ⊥l u|εl), P (δ⊥l u|∆⊥

l ) and unconditioned P (δ⊥l u), including
the third order transverse structure function S⊥

3

-1

 0

 1

 2

 3

 4

 5

 6

 1  10  100  1000

S3,εl

S6,εl

S3
S6

r/η

lo
g
a
ri

th
m

ic
d
er

iv
a
ti
v
e

FIG. 9. Logarithmic derivative of the conditioned and uncon-
ditioned transverse velocity structure function of order p = 3
and p = 6, lines indicate the Kolmogorov prediction

IV. LAGRANGIAN CONDITIONAL STATISTICS

After having computed statistics in the Eulerian frame-
work we now consider velocity increments (5) in the La-
grangian frame of reference. The Lagrangian analog to
the RSH might be labeled the Lagrangian refined self-
similarity hypothesis (LRSH) and reads

δτvi = (βLτετ )
1/2, (13)

where the local energy dissipation rate (3) is averaged
along a particle trajectory according to

ετ =
1

τ

∫ τ

0
ε(X(x0, t))dt. (14)

However, one can question whether ετ is the correct quan-
tity appearing in (13). Benzi et al.27 examined this
relation by means of the assumption of extended self-
similarity and found that ετ rather than the averaged
square of vorticity

Ωτ =
1

τ

∫ τ

0
|ω(X(x0, t))|dt.

is the correct quantity in (13). Yu et al.28 conditioned
the velocity increments on a spatially averaged energy
dissipation rate at one foot-point of the increments.
In this work we stick to trajectory-averaged condi-

tions and propose yet another one for Lagrangian in-
crement statistics. In order to motivate this on di-
mensional grounds we recall that Eulerian increments
(ui(l ej)−ui(0))/l tend to spatial derivatives ∂jui of the
velocity field in the limit l → 0. Those derivatives ap-
pear in the local energy dissipation rate (3). Instead,
Lagrangian increments (ui(τ)−ui(0))/τ tend to the fluid-
particle acceleration in the limit τ → 0 which involve a
term uj∂jui. We therefore propose to replace (14) by

εLτ =
1

2

∫
dt

∑
i,j

[uj ∂jui + ui ∂iuj ]
2 (15)

in the LRSH (13).
The calculation of ετ , Ωτ , and εLτ for a given time lag

τ is done by averaging the local quantities over all stored
points along the particle trajectory. We achieved con-
verged statistics by taking the average over 10 Million
particles and several large-eddy turn-over times.

FIG. 10. Flatness factors of the conditioned velocity incre-
ment PDFs P (δτvi|ετ ), P (δτvi|ε

L
τ ) and P (δτvi|Ωτ ) as well as

of the unconditioned PDF P (δτvi) together with the logarith-
mic derivative of SL

2

In Fig. 10 we compare the flatness of velocity increment
PDFs conditioned on ετ , Ωτ , and εLτ . We added the loga-
rithmic derivative of the second order Lagrangian struc-
ture function SL

2 (l) = 〈(δτvi)2〉 in order to clarify three
different ranges of scales: The dissipative scales up to
τ ≈ 1, the inertial ones 1 < τ < 60, followed by the large
scales. If we restrict our attention to the inertial range we
observe that the flatness is most efficiently reduced by εLτ .
Also the trajectory integrated energy dissipation rate ετ
diminishes significantly the flatness while the integrated
vorticity Ωτ has a negligible effect. This indicates that
εLτ might be a more appropriate condition than ετ .
The corresponding conditioned increment PDFs are la-

beled P (δτvi|ετ ) and show in Fig. 11. The PDF corre-
sponding to the shortest time-lag considered is reason-
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FIG. 9. Logarithmic derivative of the conditioned and uncon-
ditioned transverse velocity structure function of order p = 3
and p = 6, lines indicate the Kolmogorov prediction

IV. LAGRANGIAN CONDITIONAL STATISTICS

After having computed statistics in the Eulerian frame-
work we now consider velocity increments (5) in the La-
grangian frame of reference. The Lagrangian analog to
the RSH might be labeled the Lagrangian refined self-
similarity hypothesis (LRSH) and reads

δτvi = (βLτετ )
1/2, (13)

where the local energy dissipation rate (3) is averaged
along a particle trajectory according to

ετ =
1

τ

∫ τ

0
ε(X(x0, t))dt. (14)

However, one can question whether ετ is the correct quan-
tity appearing in (13). Benzi et al.27 examined this
relation by means of the assumption of extended self-
similarity and found that ετ rather than the averaged
square of vorticity

Ωτ =
1

τ

∫ τ

0
|ω(X(x0, t))|dt.

is the correct quantity in (13). Yu et al.28 conditioned
the velocity increments on a spatially averaged energy
dissipation rate at one foot-point of the increments.
In this work we stick to trajectory-averaged condi-

tions and propose yet another one for Lagrangian in-
crement statistics. In order to motivate this on di-
mensional grounds we recall that Eulerian increments
(ui(l ej)−ui(0))/l tend to spatial derivatives ∂jui of the
velocity field in the limit l → 0. Those derivatives ap-
pear in the local energy dissipation rate (3). Instead,
Lagrangian increments (ui(τ)−ui(0))/τ tend to the fluid-
particle acceleration in the limit τ → 0 which involve a
term uj∂jui. We therefore propose to replace (14) by

εLτ =
1

2

∫
dt

∑
i,j

[uj ∂jui + ui ∂iuj ]
2 (15)

in the LRSH (13).
The calculation of ετ , Ωτ , and εLτ for a given time lag

τ is done by averaging the local quantities over all stored
points along the particle trajectory. We achieved con-
verged statistics by taking the average over 10 Million
particles and several large-eddy turn-over times.

FIG. 10. Flatness factors of the conditioned velocity incre-
ment PDFs P (δτvi|ετ ), P (δτvi|ε

L
τ ) and P (δτvi|Ωτ ) as well as

of the unconditioned PDF P (δτvi) together with the logarith-
mic derivative of SL

2

In Fig. 10 we compare the flatness of velocity increment
PDFs conditioned on ετ , Ωτ , and εLτ . We added the loga-
rithmic derivative of the second order Lagrangian struc-
ture function SL

2 (l) = 〈(δτvi)2〉 in order to clarify three
different ranges of scales: The dissipative scales up to
τ ≈ 1, the inertial ones 1 < τ < 60, followed by the large
scales. If we restrict our attention to the inertial range we
observe that the flatness is most efficiently reduced by εLτ .
Also the trajectory integrated energy dissipation rate ετ
diminishes significantly the flatness while the integrated
vorticity Ωτ has a negligible effect. This indicates that
εLτ might be a more appropriate condition than ετ .
The corresponding conditioned increment PDFs are la-

beled P (δτvi|ετ ) and show in Fig. 11. The PDF corre-
sponding to the shortest time-lag considered is reason-

Benzi, Biferale et al (2009): �� works better
Yu and Menveau: (2010): conditioned the velocity increments on

a spatially averaged energy dissipationrate
at one foot-point of the increments
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FIG. 11. Conditioned PDFs P (δτvi|ετ ) for different time lags
τ in comparison to a Gaussian distribution and to the K41-
prediction for the PDF of acceleration, normalized to unit
variance

ably well described by the K41-acceleration PDF16

P (a) = (a/b)−5/9 exp[−0.5 (a/b)8/9]/c (16)

normalized to unit-variance with a = 0.48 and b = 2.72.
This PDF is the Lagrangian analogon to a Gaussian dis-
tribution for Eulerian velocity gradients.
It is important to note that contrarily to the re-

sults in Eulerian setup the conditioned Lagrangian PDFs
P (δτvi|εLτ ) (see Fig. 11) are still scale-dependent. One
notes a transition from stretched tails (K41-prediction)
for short time-lags to Gaussian PDFs (uncorrelated
statistics) for time lags of the order of the integral time
scale. This implies that Lagrangian increment statistics
is ’naturally’ scale dependent.
As can be see from the unconditioned structure func-

tion in Fig. 10, Lagrangian structure functions do not
show a clear scaling law at today accessible Reynolds
numbers. We therefore refer to relative structure func-
tions Sp(S2). In the computation of the conditioned
structure functions we fixed one εLτ for all increments
τ . In Fig. 12 their logarithmic derivatives are shown
which clearly change under the condition εLτ . There are
two major differences between the conditioned and un-
conditioned functions. The first concerns intermittency:
The conditioned functions have larger values than the
unconditioned ones. We observe a value of approxi-
mately. 1.43 which is close to the K41 prediction of 1.5.
This implies that intermittency is significantly reduced
on subsets ΩεLτ

. A second feature of Lagrangian incre-
ment statistics is the so called bottleneck around a few
τη. It has been attributed to the characteristic trajecto-
ries (spirals) of tracers in the vicinity of coherent vortex
filaments. This bottleneck in the local slop is absent once
velocity increments are conditioned (see again Fig. 12),
which means that their scaling range is enlarged. Its ori-
gin is supposed to be in the coexistence of two different
power-laws. The first related to dissipative effects and
the second to inertial range physics29. An insufficient

separation of dissipative and inertial scales might lead to
the observed dip in the local slope of structure functions.
Interestingly, this bottleneck is negligible in the case of
conditioned structure functions. This implies that it is
due to a mixture of statistics from different subset ΩεLτ

.

FIG. 12. Logarithmic derivatives of relative Lagrangian ve-
locity structure function. εLτ = 1 corresponds to the one with
the most statistics

V. CONCLUSION

This work investigates the statistics of Eulerian and
Lagrangian velocity increments when conditioned to dif-
ferent scale-averaged quantities such as the energy dissi-
pation rate, the square of vorticity or the velocity gradi-
ent. In the case of Lagrangian increments we propose a
novel condition dimensionally related to the acceleration
of fluid elements.
Considering Eulerian statistics we find that longitudi-

nal as well as transverse increment PDFs are Gaussian
shaped with flatness factors close to three when condi-
tioned to the scale-averaged energy dissipation rate. The
averaged vorticity produces slightly flatter tails while the
longitudinal and transverse velocity gradient perform sig-
nificantly worse. Therefore, there is no preferential link
of transverse increments and vorticity as of longitudinal
increments and energy dissipation rate which is impor-
tant for models of intermittency. Conditional structure
functions show clear K41-scaling within the inertial range
of scales.
Considering Lagrangian statistics we investigated ve-

locity increments conditioned to trajectory-averaged
quantities such as the energy dissipation rate, the vor-
ticity and a novel condition. The latter is motivated by
dimensional arguments. Conditioning to the dissipation
rate and to the novel condition yields flatnesses of the in-
crement PDFs much smaller than without conditioning.
More precisely, the conditioned PDF of the shortest in-
crement considered agrees reasonably well with the K41-
prediction for the PDF of acceleration. Within the iner-
tial range of scales the flatnesses of PDFs under the novel
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and p = 6, lines indicate the Kolmogorov prediction

where the local energy dissipation rate (3) is averaged
along a particle trajectory according to

ετ =
1

τ

∫ τ

0

ε(X(x0, t))dt. (14)

However, one can question whether ετ is the correct quan-
tity appearing in (13). Benzi et al.23 examined this
relation by means of the assumption of extended self-
similarity and found that ετ rather than the averaged
square of vorticity

Ωτ =
1

τ

∫ τ

0

|ω(X(x0, t))|dt.

is the correct quantity in (13). Yu et al.24 conditioned
the velocity increments on a spatially averaged energy
dissipation rate at one foot-point of the increments.
In this work we stick to trajectory-averaged condi-

tions and propose yet another one for Lagrangian in-
crement statistics. In order to motivate this on di-
mensional grounds we recall that Eulerian increments
(ui(l ej)−ui(0))/l tend to spatial derivatives ∂jui of the
velocity field in the limit l → 0. Those derivatives ap-
pear in the local energy dissipation rate (3). Instead,
Lagrangian increments (ui(τ)−ui(0))/τ tend to the fluid-
particle acceleration in the limit τ → 0 which involve a
term uj∂jui. We therefore propose to replace (14) by

εLτ =
1

2

∫
dt

∑
i,j

[uj ∂jui + ui ∂iuj ]
2 (15)

in the LRSH (13).
The calculation of ετ , Ωτ , and εLτ for a given time lag

τ is done by averaging the local quantities over all stored
points along the particle trajectory. We achieved con-
verged statistics by taking the average over 10 Million
particles and several large-eddy turn-over times.
In Fig. 10 we compare the flatness of velocity incre-

ment PDFs conditioned on ετ , Ωτ , and εLτ . We added the

FIG. 10. Flatness factors of the conditioned velocity incre-
ment PDFs P (δτvi|εl), P (δτvi|ετ ) and unconditioned P (δτvi)
together with the logarithmic derivative of SL

2 (scaled by a
factor of 15)

shifted logarithmic derivative of the second order struc-
ture function in order to clarify three different ranges of
scales: The dissipative scales up to τ ≈ 1, the inertial
ones 1 < τ < 60, followed by the large scales. If we re-
strict our attention to the inertial range we observe that
flatness is most efficiently reduced by εLτ . Also the tra-
jectory integrated energy dissipation rate ετ diminishes
significantly the flatness while the integrated vorticity Ωτ

has a negligible effect. This indicates that εLτ might be a
more appropriate condition than ετ although we still not
reach the Gaussian value of three.

FIG. 11. Conditioned PDFs P (δτ |ετ ) for different time lags τ
in comparison to a Gaussian distribution, normalized to unit
variance

We label the corresponding conditioned increment
PDFs by P (δτvi|ετ ). Contrarily to the results in Eulerian
setup the conditioned Lagrangian PDFs P (δτvi|εLτ ) (see
Fig. 11) are clearly scale-dependent. One notes a transi-
tion from stretched tails for short time-lags to Gaussian
tails for time lags of the order of the integral time scale.
As already seen from Fig. 10, Lagrangian structure

functions do not show a clear scaling law at today acces-

Homann, Schulz, Grauer 2010:

even slightly more Gaussian than Pðd?l ujXlÞ. The averaged
transverse gradient

D?l ¼
1

l

ðl

0

ds mjl̂ $ruðxþ s l̂Þj2 (12)

reduces the flatness less than the two other conditions.
The transverse structure functions are shown in Fig. 9.

As expected, we find that the conditioned ones follow the
K41 prediction within the inertial range of scale while the
high-order unconditioned functions have significantly lower
plateaus.

IV. LAGRANGIAN CONDITIONAL STATISTICS

After having computed statistics in the Eulerian frame-
work we now consider velocity increments [Eq. (5)] in the
Lagrangian frame of reference. The Lagrangian analog to the
RSH might be labeled the Lagrangian refined self-similarity
hypothesis (LRSH) and reads

dsvi ¼ bLðs!sÞ
1=2; (13)

where the local energy dissipation rate Eq. (3) is averaged
along a particle trajectory according to

!s ¼
1

s

ðs

0

!ðXðx0; tÞÞdt: (14)

However, one can question whether !s is the correct quantity
appearing in Eq. (13). Benzi et al.28 examined this relation
by means of the assumption of extended self-similarity and
found that rather !s than the averaged square of vorticity

Xs ¼
1

s

ðs

0

jxðXðx0; tÞÞj2dt

is the correct quantity in Eq. (13). There are further strategies
of conditioning: Yu et al.29 for example conditioned the ve-
locity increments on a spatially averaged energy dissipation
rate at one foot point of the increments.

In this work we stick to trajectory-averaged conditions
and propose yet another one for Lagrangian increment statis-
tics. In order to motivate this on dimensional grounds we
recall that Eulerian increments ðuiðl ejÞ & uið0ÞÞ=l tend to
spatial derivatives @jui of the velocity field in the limit
l! 0. Those derivatives appear in the local energy dissipa-
tion rate Eq. (3). Instead, Lagrangian increments
ðuiðsÞ & uið0ÞÞ=s tend to the fluid particle acceleration in the
limit s! 0 which involve a term uj@jui. We therefore pro-
pose to replace Eq. (14) by

!L
s ¼

1

2

ð
dt
X

i;j

½uj @jui þ ui @iuj(2 (15)

in the LRSH [Eq. (13)].
The calculation of !s, Xs, and !L

s for a given time lag s is
done by averaging the local quantities over all stored points
along the particle trajectory. We achieved converged statis-
tics by taking the average over 10$ 106 particles and several
large-eddy turn-over times.

In Fig. 10 we compare the flatness of velocity increment
PDFs conditioned on !s, Xs, and !L

s . We added the logarith-
mic derivative of the second order Lagrangian structure
function SL

2ðlÞ ¼ hðdsviÞ2i in order to clarify three different
ranges of scales: the dissipative scales up to s ) 1, the iner-
tial ones 1 < s < 60, followed by the large scales. If we
restrict our attention to the inertial range we observe that the
flatness is most efficiently reduced by !L

s . Also the trajectory
integrated energy dissipation rate !s diminishes significantly
the flatness while the integrated vorticity Xs has a negligible
effect. This indicates that !L

s might be a more appropriate
condition than !s.

The corresponding conditioned increment PDFs
are labeled Pðdsvij!sÞ and shown in Fig. 11. The PDF
corresponding to the shortest time lag considered is
reasonably well described by a prediction for the accel-
eration PDF (Ref. 30)

PðaÞ ¼ ða=bÞ&5=9 exp½&0:5 ða=bÞ8=9(=c (16)

FIG. 9. (Color online) Logarithmic derivative of the conditioned (symbols)
and unconditioned (solid lines) transverse velocity structure function of
order p¼ 3 and p¼ 6, lines indicate the Kolmogorov prediction.

FIG. 10. (Color online) Flatness factors of the conditioned velocity incre-
ment PDFs Pðdsvij!sÞ, Pðdsvij!L

s Þ, and PðdsvijXsÞ as well as of the uncondi-
tioned PDF PðdsviÞ together with the logarithmic derivative of SL

2 .
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FIG. 11. Conditioned PDFs P (δτvi|ετ ) for different time lags
τ in comparison to a Gaussian distribution and to the K41-
prediction for the PDF of acceleration, normalized to unit
variance

ably well described by the K41-acceleration PDF16

P (a) = (a/b)−5/9 exp[−0.5 (a/b)8/9]/c (16)

normalized to unit-variance with a = 0.48 and b = 2.72.
This PDF is the Lagrangian analogon to a Gaussian dis-
tribution for Eulerian velocity gradients.
It is important to note that contrarily to the re-

sults in Eulerian setup the conditioned Lagrangian PDFs
P (δτvi|εLτ ) (see Fig. 11) are still scale-dependent. One
notes a transition from stretched tails (K41-prediction)
for short time-lags to Gaussian PDFs (uncorrelated
statistics) for time lags of the order of the integral time
scale. This implies that Lagrangian increment statistics
is ’naturally’ scale dependent.
As can be see from the unconditioned structure func-

tion in Fig. 10, Lagrangian structure functions do not
show a clear scaling law at today accessible Reynolds
numbers. We therefore refer to relative structure func-
tions Sp(S2). In the computation of the conditioned
structure functions we fixed one εLτ for all increments
τ . In Fig. 12 their logarithmic derivatives are shown
which clearly change under the condition εLτ . There are
two major differences between the conditioned and un-
conditioned functions. The first concerns intermittency:
The conditioned functions have larger values than the
unconditioned ones. We observe a value of approxi-
mately. 1.43 which is close to the K41 prediction of 1.5.
This implies that intermittency is significantly reduced
on subsets ΩεLτ

. A second feature of Lagrangian incre-
ment statistics is the so called bottleneck around a few
τη. It has been attributed to the characteristic trajecto-
ries (spirals) of tracers in the vicinity of coherent vortex
filaments. This bottleneck in the local slop is absent once
velocity increments are conditioned (see again Fig. 12),
which means that their scaling range is enlarged. Its ori-
gin is supposed to be in the coexistence of two different
power-laws. The first related to dissipative effects and
the second to inertial range physics29. An insufficient

separation of dissipative and inertial scales might lead to
the observed dip in the local slope of structure functions.
Interestingly, this bottleneck is negligible in the case of
conditioned structure functions. This implies that it is
due to a mixture of statistics from different subset ΩεLτ

.

FIG. 12. Logarithmic derivatives of relative Lagrangian ve-
locity structure function. εLτ = 1 corresponds to the one with
the most statistics

V. CONCLUSION

This work investigates the statistics of Eulerian and
Lagrangian velocity increments when conditioned to dif-
ferent scale-averaged quantities such as the energy dissi-
pation rate, the square of vorticity or the velocity gradi-
ent. In the case of Lagrangian increments we propose a
novel condition dimensionally related to the acceleration
of fluid elements.
Considering Eulerian statistics we find that longitudi-

nal as well as transverse increment PDFs are Gaussian
shaped with flatness factors close to three when condi-
tioned to the scale-averaged energy dissipation rate. The
averaged vorticity produces slightly flatter tails while the
longitudinal and transverse velocity gradient perform sig-
nificantly worse. Therefore, there is no preferential link
of transverse increments and vorticity as of longitudinal
increments and energy dissipation rate which is impor-
tant for models of intermittency. Conditional structure
functions show clear K41-scaling within the inertial range
of scales.
Considering Lagrangian statistics we investigated ve-

locity increments conditioned to trajectory-averaged
quantities such as the energy dissipation rate, the vor-
ticity and a novel condition. The latter is motivated by
dimensional arguments. Conditioning to the dissipation
rate and to the novel condition yields flatnesses of the in-
crement PDFs much smaller than without conditioning.
More precisely, the conditioned PDF of the shortest in-
crement considered agrees reasonably well with the K41-
prediction for the PDF of acceleration. Within the iner-
tial range of scales the flatnesses of PDFs under the novel
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