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We derive first-principles equations that bridge the Eulerian and Lagrangian energy spectra, E
E
(k) and

E
L
(ω), as well as the Eulerian and Lagrangian dissipation, ε

E
(k) = 2νk2E

E
(k) and E

L
(ω) ε

L
(ω) for

homogeneous isotropic hydrodynamic turbulence. We demonstrate that both analytical relationships,

E
L
(ω) ⇔ E

E
(k) and ε

L
(ω) ⇔ ε

E
(k), are in very good quantitative agreement with our DNS results,

which show that not only E
L
(ω, t) but also the Lagrangian spectrum of the dissipation rate ε

L
(ω, t) has

its maximum at low frequencies (about the turnover frequency of energy containing eddies) and vanishes

at large frequencies ω (about a half of the Kolmogorov microscale frequency) for both stationary and

decaying isotropic turbulence.
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• Problem of Turbulence

looks amazingly simple: one has “just” to solve one-line Navier-Stokes Equation (NSE)

Euler NSE:
∂u(r, t)

∂t
+ (u ·∇)u +∇p− ν∇2u = f , (1)

for the “Eulerian” velocity field u(r, t), in a “laboratory” reference frame with given boundary conditions,

kinematic viscosity ν and forcing f (r, t) which maintains the flow. For small fluid velocities (with respect

to the speed of sound) the flow can be considered as incompressible: ∇ · u = 0, and the pressure field

p(r, t) can be reconstructed from u(r, t).
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• Lagrangian approach

is dealing with the time-dependent Lagrangian velocity: u
L
(r0|t) ≡ u

(
r
L
(r0|t), t

)
, in which r

L
(r0|t)

is the trajectory of fluid point, positioned at r0 at t = t0.:

Lagrangian NSE:
duL(r0|t)

dt
+
[
∇p− ν∇2u

]
L
(r0|t) = fL(r0|t) ,(2)

follows directly from the Eulerian NSE (1). Hereafter
[
Ψ
]
L
(r0|t) denotes a function Ψ(r, t), taken at

r = r
L
(r0|t), e.g.

[
∇p

]
L
(r0|t0) ≡ ∇p(r, t)

∣∣
r=r

L
(r0|t)

. One can say that in the Eulerian approach

one is looking at stormy wind through window of his lab, while in the Lagrangian case he participates

simultaneously in the motions of all the air particles.
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Lagrangian approach has unique physical advantages that are especially important in studies of

phenomena dominated by small-scale motions or many-point correlation functions, like turbulent mixing

and particle dispersion. It is natural conceptually and useful in practice for the description of turbulent

transport.

However, some important aspects of small-scale statistics, transport and other related phenomena,

that can be studied via the Lagrangian approach, are still unclear or poorly understood. One reason is

the technical problems: the Lagrangian NSE (2) is not local in time: it implicitly includes, at time t,

the entire history of the velocity-field for times t0 < t′ < t through the Lagrangian trajectories r
L
(r0|t),

i.e. via complicated nonlinear time evolution operators. That is why little progress has been made

in the analytical description of the statistics of turbulence in the Lagrangian frame. For example, the

celebrated Kraichnan’s ”Lagrangian History” approach, which analytically reproduced the Kolmogorov-

41 energy spectrum E(k) ∝ k−5/3 from the Lagrangian NSE (2), was formulated only in simplest

Direct-Interaction Approximation.

Even more: some fundamental (and very simple) aspects of the Lagrangian theory are still missing.

For example, to the best of our knowledge, the energy balance equation for the Lagrangian spectrum,
∂
∂tEL

(t, ω) does not exist in the available literature, whereas the corresponding equation for the corre-

sponding Eulerian spectrum ∂
∂tEE

(t, k) is written in numerous papers and textbooks.
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• Evolution equation of Lagrangian power spectrum EL(t, ω).
Define the Lagrangian velocity autocorrelation function:

R
L
(t, s) = ⟨u

L
(r0|t− s/2) · u

L
(r0|t + s/2)⟩r0 ,

where ⟨. . . ⟩r0 denotes an ensemble averaging over an infinite number of pathlines with different initial

positions r0. In homogeneous turbulence RL
(t, s) is independent of the space coordinates (including r0).

In stationary turbulence R
L
(t, s) depends only on the lag time s. In homogeneous turbulence the same-

point-Lagrangian and Eulerian correlation functions are equal. Thus,

E(t) = E
L
(t) ≡ 1

2
⟨|u

L
(x0|t)|2⟩r =

1

2
R

L
(t, 0) ,

where ⟨. . . ⟩r denotes a spacial averaging over Eulerian positions x. LetEL
(t, ω) be the Fourier transform

of 1
2RL

(t, s):

E
L
(t, ω) =

1

2
F{R

L
(t, s)} ,

where F{φ(s)} ≡
∫∞
∞ φ(s) exp(iωs)ds.

Note also that E
L
(t) is the integral of the Lagrangian power spectrum E

L
(t, ω) with respect to ω,

and with the factor 1
2π :

E
L
(t) = E

E
(t) = E(t) =

∫
E

L
(t, ω)

dω

2π
.
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The Lagrangian NSE (2) allows one to derive straightforwardly

∂EL(t, ω)

∂t
= T L(t, ω)− εL(t, ω) +ΨL(t, ω) , (3a)

where the transfer rate of E
L
(t, ω) across the ω-space:

T
L
(t, ω) = −1

2
F⟨u

L

(
x0|t−

s

2

)
·
[
∇p

]
L

(
r0|t +

s

2

)
+ u

L

(
r0|t +

s

2

)
·
[
∇p

]
L

(
r0|t−

s

2

)
⟩r0 , (3b)

and the viscous dissipation rate of E
L
(t, ω) and the rate of energy addition (via forcing) to E

L
(t, ω) to

maintain turbulence stationarity are:

ε
L
(t, ω) = −1

2
ν F⟨u

L

(
r0|t−

s

2

)
· ∇2u

L

(
r0|t +

s

2

)
+ u

L

(
r0|t +

s

2

)
· ∇2u

]
L

(
r0|t−

s

2

)
⟩r0 , (3c)

Ψ
L
(t, ω) =

1

2
F⟨u

L

(
r0|t−

s

2

)
· f

L

(
r0|t +

s

2

)
+ u

L

(
r0|t +

s

2

)
· f

L

(
r0|t−

s

2

)
⟩r0 , (3d)

Unfortunately, this equation for ∂
∂tEL

(t, ω) is not local in time as it depends on the flow history and

thus can be straightforwardly evaluated only numerically from direct numerical simulations (DNS).

Next I will describe a way to circumvent this limitation by derivation of Eurelian-Lagrangian bridges

that allow the determination of the Lagrangian (frequency) kinetic energy spectrum, E
L
(ω), from a

given Eulerian energy spectrum, E
E
(k), as well as the Lagrangian (frequency) dissipation spectrum,

ε
L
(ω), from a given Eulerian counterpart, ε

E
(k). The bridge-relationships are not limited by either the

inertial interval of scales, or by the requirement of large Reλ.
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• Sweeping elimination from a theory of turbulence
The modern statistical theory of hydrodynamic turbulence goes back to the DIA-paper by Kraichnan 1

and DT-paper by Wyld 2 who suggested to simulate excitation of stationary spatially homogeneous

developed hydrodynamic turbulence with the help of a spatially distributed variable force in the NSE.

IR divergence in Kraichnans DIA led to the following erroneous energy spectrum in the inertial interval

E(k) ≃
√

εV
T
k−3/2 ≃ (ε/ρ)3/2k−5/3(kL)−1/6 , (4)

and to the de-correlation frequency of the different-time Eulerian velocity correlator: Ω
D
(k) ≃ kV

T
,

which should be considered as the Doppler shift of the frequency of k-eddies in a random velocity field

of energy contained eddies of the scale L. The reason for this difficulty is that DIA does not correctly

separate the sweeping [with the frequency Ω
D
(k)] and dynamic interactions with the turnover frequency

γ(k) ≃ ε1/3k2/3 ≪ Ω
D
(k) ≃ γ(k)(kL)1/3 . (5)

Therefore, the problem consists in distinguishing and studying a relatively weak dynamic-interaction

that determines the turbulence spectrum in the formal technique of the theory on the background of the

effect of kV
D
-sweeping, masking the interaction. The natural way to solve this problem is to use, for

the description of the dynamic interaction of eddies, variables without the kinematic effect of sweeping.

Kraichnan in his LHDIA papers 3 used the Lagrangian description of fluid flows for this purpose, but

this led to serious technical difficulties, which did not allow him to go further than the DIA.

1R.H. Kraichnan, I. Fluid Mech. 6 (1959) 497
2H.W. Wyld, Ann. Phys. 14 (1961)143.
3RH. Kraichnan, Phys. Fluids 8 (1965) 575-598; 9 (1966) 1728].
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The authors of a number of papers 4, 5, 6, 7, 8, 9 tried to solve this problem by the explicit introduction

of a separation scale, k′, into the theory, L < k′ < k. Unfortunately, in so doing sweeping of k-eddies

by significantly larger k-eddies is always kept and the difficulties in the theory remain.

In 1977 10 I suggested a method of the sweeping elimination without using a separation scale, by

developing some “intrinsic” perturbational approach, in which random sweeping was eliminated from

the statistical theory AFTER averaging over small scale statistics. This approach is much better the

the Kraichnan’s DIA because it accounts the sweeping in every order of perturbation theory, while the

rather weak effect of the dynamic interaction of eddies is considered approximately, by the first diagram

of the internal diagram technique. Unfortunately, a simple analysis of some diagrams of fourth order in

the vertices in the internal diagram technique in Euler variables reveals logarithmic divergences.

The problem of eliminating sweeping in all orders of perturbation theory was solved in 11 by using

quasi-Lagrangian reference system in which the origin is moving with the velocity of ONE Lagrangian

tracer. The main technical achievement is a proof that the in this approach the sweeping is eliminated

in ALL orders of the perturbation approach, because the sweeping was eliminated BEFORE statistical

averaging. Thus it can be called sweeping-free quasi-Lagrangian approach.

4B.B. Kadomtsev, Plasma Turbulence (Academic Press, London, 1965)
5GA. Kuzmin and A.Z. Patashinskii, J.AppI. Mech. Tech. Phys. 19 (1978) 50
6Nakano and F. Tanaka, Prog. Theor. Phys. 65 (1981) 120.
7S.S. Moiseev, A.V. Tur and V.V. Yanovskii, Sov.Phys. DokI. 29 (1984) 926].
8R.Z. Sagdeev et al., in: Nonlinear Phenomena in Plasma Physics and Hydrodynamics, ed. R.Z. Sagdeev

. (Mir, Moscow, 1986) p. 137.
9H. Effinger and S. Grossmann, Z. Phys. B 66 (1987) 289304.

10V.S. Lvov, preprint No. 53, Institute of Automation and Electrometry, Novosibirsk (1977).
11V.1. Belinicher and VS. Lvov, Zh. Eksp. Teor. Fiz. 93 (1987) 533 [Sov.Phys. JETP 66 (1987) 303]

8



• Sweeping-free quasi-Lagrangian approach
Derivation of the Eulerian-Lagrangian Bridges requires elimination from the theory of the kinematic

effect of sweeping of the small scale motion by the energy-contained (large scale) motions. In principle

this can be done in the Lagrangian approach. However, due to time non-locality of the Lagrangian

NSE (2) this is extremely difficult and hardly possible.

A way out, suggested by Belinicher-L’vov (hereafter BL) in a 1987-JETP paper is to eliminate the

kinematic sweeping effect by using a reference frame shared by all fluid points inside a large eddy

which was named by BL in the 1987-JETP quasi-Lagrangian (qL) frame 12. Its origin moves along the

Lagrangian trajectory x
L
(x0|t) of a particular fluid point, denoted as O-point, with position x0 at time

t = t0

LV
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12Monin in 1959 used the same coordinate system (without giving it a name) to extend the region of validity of

the well known Kolmogorov’s relation between the second-order and third-order structure functions.
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The BL-1987 JETP paper introduces

sweeping-free qL-velocity: u
qL
(r0|r, t) ≡ u

(
r − r0 + r

L
(r0, t), t

)
. (6a)

Quasi-Lagrangian NSE follows directly from Eq. (6a) and the Eulerian NSE (1):

qL-NSE:
{∂
∂t

+
[
u

qL
(r0|r, t)− u

qL
(r0|r0, t)

]
·∇

}
u

qL
(r0|r, t)

+ ∇p
qL
(r0|r, t) = ν∇2u

qL
(r0|r, t) + f

qL
(r0|r, t) . (6b)

Note that both the quasi-Lagrangian NSE (6b) and Eulerian NSE (1) do not involve the history of the

fluid points trajectories, whereas Lagrangian NSE (2) does.

However, the kinematic sweeping effect, inherent in the Eulerian NSE (1), is eliminated from the qL-

NSE (6b) as it was proven by BL in the 1987-JETP paper at all orders of the Wyld perturbation

technique. The reason is that the large scale eddies do not contribute to the qL-velocity difference[
u

qL
(r0|r, t)− u

qL
(r0|r0, t)

]
, in contrast to the Eulerian NSE.

In the framework of the qL-NSE (6b) L’vov-Procaccia in a set of 1995-2000 PRE papers

• invented fusion rules for the many-point velocity correlation functions,

• proved the K41 hypothesis of the cascade picture of the energy transfer over scales

• demonstrated that anomalous scaling is consistent with NSE, being a non-perturbation effect

• used the fusion rules for analytic calculation of anomalous . scaling exponents in turbulence.

Based on the results above I will use qL-NSE (6b) to derive the Eulerian-Lagrangian bridges.

10



• Derivation of the Eulerian-Lagrangian Bridges

Consider the two-point, different-time cross-velocity correlation of the qL-velocities

W (r, s) ≡ ⟨uqL
(r0|r′, t′) · uqL

(r0|r′′, t′′)⟩ , where r = r′ − r′′ , s = t′ − t′′ .

Denote the (k, ω)-Fourier transform of W (r, s) as W(k, ω), i.e. W(k, ω) ≡ F{W (r, s)}.
W(k, ω) is the turbulence kinetic energy density (per unit mass) in the k- and ω-spaces simultaneously.

In isotropic turbulence W(k, ω) ⇒ W(k, ω). Then, instead of W(k, ω) it is convenient to introduce

E
qL
(k, ω) ≡ 2πk2W(k, ω).

E
qL
(k, ω) is the qL kinetic energy density in one-dimensional k- and frequency ω-space simultaneously.

E
E
(k) =

∫
E

qL
(k, ω)dω/2π , E

L
(ω)=

∫
E

qL
(k, ω)dk, ε

L
(ω)= 2ν

∫
k2E

qL
(k, ω)dk . (7a)

Here we have used the BL result that the dissipative term in the balance equation for W(k, ω) has the

simple form 2νk2W(k, ω). It was shown by BL that, in the qL-reference frame, the kinematic sweeping

of small eddies by the velocity field of the larger eddies is absent, and thus the characteristic frequency

for the k-scale motions is γ(k) ≈ k
√

kE
E
(k). Therefore, one can write:

E
qL
(k, ω) ≈ 2πΦ[ ω/γ(k) ]E(k)/γ(k) , (7b)

where
∫
Φ(x) dx = 1. The exact form of Φ(x) is not known. However, BL indicated that W(k, ω)

decays much faster than 1/x2 for limx→∞. For simplicity we chose: Φ(x) = exp(−x).

11



Next: Eqs.(7) give the Eulerian-Lagrangian bridges for the energy (8a) and for the dissipation rate (8a):

E
L
(ω) ≃ 2π

∫
E

E
(k)

γ(k)
exp

[
− ω

γ(k)

]
dk ⇒ ω−2 − ω−2

η , (8a)

ε
L
(ω) ≃ 4πν

∫
k2E

E
(k)

γ(k)
exp

[
− ω

γ(k)

]
dk ⇒ ν

(
ωη − ω

)
. (8b)

The Eulerian-Lagrangian bridges (written to the left of ⇒) (8) are not limited by either the inertial

interval of scales, or by the requirement of large Reλ. For Reλ ≫ 1 Eqs. (8) can be simplified using

that exp[−ω/γ(k)] ≪ 1 if γ(k) < ω. Introducing k(ω) ≡
√

ω3/ε we can replace the zero lower limit

by k(ω) and the upper limit by (1/η) (η-the Kolmogorov micro-scale) of the integrals in (8). This gives

the red-marked results in Eqs. (8) in which ωη = π
√
ε/ν is the turnover frequency of η-scale eddies.

0.01Γm 0.1Γm Γm

Log Ω

1

0.1

0.5

0 1 2
LogHk�k+L-6

-4

-2

0

Left:Lagrangian spectra for energy, E
BL
(ω), and dissipation ε

BL
(k, ω) found from Eqs. (8), using exam-

ples of the Eulerian spectra for energy E
BL
(k) and dissipation, ε

BL
(k, ω), shown on the Right.
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• Eulerian and Lagrangian DNS study of turbulence
We used 10243 grid points in a cubical domain with periodic boundary conditions to simulate isotropic

turbulent flow at Reλ = 240 for about 20 τL, energy-contained eddy turnover times. In order to produce a

stationary turbulence with total (time-independent) energy density E we used Lundgren’s linear forcing

method by applying a force fi(x, t) = 2ε(t)u(r, t)/E, in which ε(t) is the current rate of energy

dissipation. To obtain the Lagrangian objects we computed the trajectories of 5 × 105 fluid points,

randomly released in the computational domain. The instantaneous Lagrangian velocities of the fluid

points, are computed using the 4-order 3-dimensional Hermite interpolation.

We obtained preliminary DNS results of numerical simulations for for stationary isotropic turbulence

Left: Lagrangian frequency spectra of turbulence energy, E
L
(ω), and dissipation rate, ε

L
(ω) and Eulerian

spectra of the energy E
E
(k) and the dissipation rate ε

E
(k). Also we got Frequency dependence of

the three terms on the RHS of the evolution Eq.(3a) and demonstrated that the sum of the three

contributions, ∂
∂tEL

(t, ω), is zero as expected in stationary turbulence. All three terms have their

maximum magnitude at the lowest frequency. The energy transfer term T
L
(t, ω) is negative at low

frequencies and becomes positive for ω/ωη > 0.03 indicating the transfer of TKE from the small to the

large frequency eddies. Finally we demonstrated that

The agreement between the analytical bridges (8), and the DNS results is very good

for both E
L
(ω) and ε

L
(ω).

The DNS study now is in progress and our final results will be available soon.
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• Concluding remarks

– We presented DNS results (10243-cube, Reλ = 240, 4× 105 tracers) of the Lagrangian energy and

dissipation rate spectra, E
L
(t, ω) and ε

L
(t, ω), in stationary homogeneous isotropic turbulence.

– Our DNS results show that not only E
L
(t, ω) but also ε

L
(t, ω) has its maximum at low frequencies

ω (about the turnover frequency of energy containing eddies) and vanishes at large ω (about a half of

the Kolmogorov microscale frequency).

– We derived Eulerian-Lagrangian bridge relationships that allow the determination E
L
(t, ω) and

ε
L
(t, ω) in terms of the Eulerian energy and dissipation spectra E

E
(t, k) and ε

E
(t, k).

– We used NSE in the sweeping-free qL-representation (intermediate between Eulerian and Lagrangian

frameworks) and the combined (k, ω) energy spectrum E
BL
(t, k, ω).

– The approach can be generalized to account for the intermittency effects and can be used to find

bridges for more complicated objects, like energy transfer term, that involves 3-rd order correlations.

– We consider the Eurelian-Lagrangian bridges and their agreement with our DNS as our central result

and expect that they will shed light on the connections between the Eulerian and Lagrangian frameworks

in turbulent flows.
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