

Physical Transport of Spectral Properties in 2D Turbulence

N.T. Ouellette

D.H. Kelley, Y. Liao

Flow Structures

Fluid flows are coherent in space and time.

Nonlinearities generate structure on many scales.

G.L. Brown \& A. Roshko, J. Fluid Mech. (1974)

Pattern Formation

Whatare the mportant flow structures?

How are structures comected to dynamics?

Can a decompostion into stuctures be predictive?

Defining "Dynamics"
$\frac{\partial \boldsymbol{u}}{\partial t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}=-\frac{1}{\rho} \nabla p+\nu \nabla^{2} \boldsymbol{u}$
$\frac{\partial \boldsymbol{u}}{\partial t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}=-\frac{1}{\rho} \nabla p+\nu \nabla^{2} \boldsymbol{u}$
Triad Interactions:
Generate new length scales

Defining "Dynamics"

$$
\frac{\partial \boldsymbol{u}}{\partial t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}=-\frac{1}{\rho} \nabla p+\nu \nabla^{2} \boldsymbol{u}
$$

Triad Interactions:
Generate new length scales

Energy injection
Spectral Transfer

Electric Current

Measure velocity field with PTV

$50 \mu \mathrm{~m}$ particles, $\sim 35 \mathrm{k}$ per frame

Advect virtual particles through field

NTO, H. Xu, \& E. Bodenschatz, Exp. Fluids (2006)

NTO, P.J.J. O'Malley, \& J.P. Gollub, Phys. Rev. Lett. (2008)
S.T. Merrifield, D.H. Kelley, \& NTO, Phys. Rev. Lett. (2010)

Field Conditioning

Ensure velocity field is 2D by projecting onto basis modes

Define three sets of modes: Ψ : streamfunction
θ : boundary Ф: potential

Lekien et al., J. Geophys. Res. (2004) D.H. Kelley \& NTO, Phys. Fluids (2011)

Field Conditioning

D.H. Kelley \& NTO, Phys. Fluids (2011)

2D Turbulence

G. Boffetta, J. Fluid Mech. (2007)

Spatially Resolved Spectral Fluxes

Convolve velocity field with spectral low pass filter:

$$
\boldsymbol{u}^{(r)}=\int G^{(r)}\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right) \boldsymbol{u}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}^{\prime}
$$

Filtered at $\mathbf{r}=\mathbf{2} \mathbf{L}_{\mathbf{f}}$

Full Field

Write equation of motion for filtered energy:

$$
\frac{\partial E^{(r)}}{\partial t}=-\frac{\partial J_{i}^{(r)}}{\partial x_{i}}-\nu \frac{\partial u_{i}^{(r)}}{\partial x_{j}} \frac{\partial u_{i}^{(r)}}{\partial x_{j}}-\Pi^{(r)}
$$

Write equation of motion for filtered energy:

$$
\frac{\partial E^{(r)}}{\partial t}=-\frac{\partial J_{i}^{(r)}}{\partial x_{i}}-\nu \frac{\partial u_{i}^{(r)}}{\partial x_{j}} \frac{\partial u_{i}^{(r)}}{\partial x_{j}}-\Pi^{(r)}
$$

Change in energy at a point

Write equation of motion for filtered energy:

Write equation of motion for filtered energy:

Write equation of motion for filtered energy:

$$
\frac{\partial E^{(r)}}{\partial t}=-\frac{\partial J_{i}^{(r)}}{\partial x_{i}}-\nu \frac{\partial u_{i}^{(r)}}{\partial x_{j}} \frac{\partial u_{i}^{(r)}}{\partial x_{j}}-\Pi^{(r)}
$$

Change in Spatial energy at transport dissipation a point

Viscous
dissipation

Coupling to other scales

Write equation of motion for filtered energy:

$\frac{\partial E^{(r)}}{\partial t}=-\frac{\partial J_{i}^{(r)}}{\partial x_{i}}-\nu \frac{\partial u_{i}^{(r)}}{\partial x_{j}} \frac{\partial u_{i}^{(r)}}{\partial x_{j}}-\Pi^{(r)}$
$\begin{array}{lcc}\text { Change in } & \text { Spatial } & \text { Viscous } \\ \text { energy at } & \text { transport } & \text { dissipation }\end{array}$ a point
Coupling to other scales

$$
\Pi^{(r)}=-\left[\left(u_{i} u_{j}\right)^{(r)}-u_{i}^{(r)} u_{j}^{(r)}\right] \frac{\partial u_{i}^{(r)}}{\partial x_{j}}
$$

G.L. Eyink, J. Stat. Phys. (1995)
M.K. Rivera et al., Phys. Rev. Lett. (2003)

Energy

Enstrophy

Spectral Energy Flux

$r / L_{f}=0.50$

5 cm

Spectral transfer is not constant in time!

How does is change? What are its dynamics?

Spectral Energy Flux Time Evolution

Spectral Energy Flux Time Evolution

5 cm

Wednesday, May 9,1

Energy Flux Correlations

D.H. Kelley \& NTO, Phys. Fluids (2011)

Spatial Dependence of Integral Times

	τ_{L} / T_{L}				
0	0.5	1	1.5	2	2.5
	\vdots	i	i	i	

Aside: Lagrangian Coherent Structures

(Right) Cauchy-Green strain tensor: $C_{i j}=\frac{\partial \Phi_{k}}{\partial x_{i}} \frac{\partial \Phi_{k}}{\partial x_{j}}$

$$
\text { FTLE: } \quad \sigma\left(\vec{x}, t_{0}, \Delta t\right)=\frac{1}{|T|} \ln \sqrt{\lambda_{\max }\left(C_{i j}\right)}
$$

G. Haller \& G. Yuan, Physica D (2000)
G.A. Voth et al., Phys. Rev. Lett. (2002)
S. Shadden, F. Lekien, \& J. Marsden, Physica D (2005)

LCS Organize Mixing

Lagrangian Coherent Structures

FTLE Field

$\int_{t}^{t+\tau} \Pi^{(r)}\left(t^{\prime}\right) \mathcal{D}\left(t^{\prime}\right)$

$$
\int_{t}^{t+\tau} \Pi^{(r)}\left(t^{\prime}\right) \mathcal{D}\left(t^{\prime}\right)
$$

Spatial Averages

Spatiotemporal Averages

Summary

Spectral fluxes have nontrivial spatiotemporal structure

Spectral transport couples to spatial transport

Appropriate Lagrangian averages reveal coherent dynamics

LCS may separate dynamically distinct regions

http://leviathan.eng.yale.edu

