Extracting flow information from sparse Lagrangian trajectories

Jean-Luc Thiffeault ${ }^{1} \quad$ Michael Allshouse ${ }^{2}$

${ }^{1}$ Department of Mathematics
University of Wisconsin - Madison
${ }^{2}$ Department of Mechanical Engineering MIT

"Euler Lagrangian meeting," Wolfgang Pauli Institute, Vienna 7 May 2012

Sparse trajectories and material loops

How do we efficiently detect trajectories that 'bunch' together?
[movie 1]

Mathematical background: Punctured disks

Low-dimensional topologists have long studied transformations of surfaces such as the punctured disk:

The central object of study is the homeomorphism: a continuous, invertible transformation whose inverse is also continuous.

For instance, this is a model of a two-dimensional vat of viscous fluid with stirring rods.

Punctured disks in experiments

The transformation in this case is given by the solution of a fluid equation over one period of rod motion.

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)] [movie 2] [movie 3]

Growth of curves on a disk

On a disk with 3 punctures (rods), we can also look at the growth of curves:
initial \circ

We use the braid generator notation: σ_{i} means the clockwise interchange of the i th and $(i+1)$ th rod. (Inverses are counterclockwise.)
The motion above is denoted $\sigma_{1} \sigma_{2}^{-1}$.

Growth of curves on a disk (2)

The rate of growth $h=\log \lambda$ is called the topological entropy.
But how do we find the rate of growth of curves for motions on the disk?

For 3 punctures it's easy: the entropy for $\sigma_{1} \sigma_{2}^{-1}$ is $h=\log \varphi^{2}$, where φ is the Golden Ratio!

For more punctures, use Moussafir iterative technique (2006).
[Thiffeault, Phys. Rev. Lett. (2005); Chaos (2010); Gouillart et al., Phys. Rev. E (2006) 'ghost rods']

Iterating a loop

It is well-known that the entropy can be obtained by applying the motion of the punctures to a closed curve (loop) repeatedly, and measuring the growth of the length of the loop (Bowen, 1978).

The problem is twofold:

1. Need to keep track of the loop, since its length is growing exponentially;
2. Need a simple way of transforming the loop according to the motion of the punctures.

However, simple closed curves are easy objects to manipulate in 2D. Since they cannot self-intersect, we can describe them topologically with very few numbers.

Solution to problem 1: Loop coordinates

What saves us is that a closed loop can be uniquely reconstructed from the number of intersections with a set of curves. For instance, the Dynnikov coordinates involve intersections with vertical lines:

Crossing numbers

Label the crossing numbers:

Dynnikov coordinates

Now take the difference of crossing numbers:

$$
\begin{aligned}
a_{i} & =\frac{1}{2}\left(\mu_{2 i}-\mu_{2 i-1}\right), \\
b_{i} & =\frac{1}{2}\left(\nu_{i}-\nu_{i+1}\right)
\end{aligned}
$$

for $i=1, \ldots, n-2$.
The vector of length $(2 n-4)$,

$$
\mathbf{u}=\left(a_{1}, \ldots, a_{n-2}, b_{1}, \ldots, b_{n-2}\right)
$$

is called the Dynnikov coordinates of a loop.
There is a one-to-one correspondence between closed loops and these coordinates: you can't do it with fewer than $2 n-4$ numbers.

Intersection number

A useful formula gives the minimum intersection number with the 'horizontal axis':

$$
L(\mathbf{u})=\left|a_{1}\right|+\left|a_{n-2}\right|+\sum_{i=1}^{n-3}\left|a_{i+1}-a_{i}\right|+\sum_{i=0}^{n-1}\left|b_{i}\right|
$$

For example, the loop on the left has $L=12$.

The crossing number grows proportionally to the the length.

Solution to problem 2: Action on coordinates

Moving the punctures according to a braid generator changes some crossing numbers:

There is an explicit formula for the change in the coordinates!

Action on loop coordinates

The update rules for σ_{i} acting on a loop with coordinates (\mathbf{a}, \mathbf{b}) can be written

$$
\begin{aligned}
a_{i-1}^{\prime} & =a_{i-1}-b_{i-1}^{+}-\left(b_{i}^{+}+c_{i-1}\right)^{+} \\
b_{i-1}^{\prime} & =b_{i}+c_{i-1}^{-} \\
a_{i}^{\prime} & =a_{i}-b_{i}^{-}-\left(b_{i-1}^{-}-c_{i-1}\right)^{-} \\
b_{i}^{\prime} & =b_{i-1}-c_{i-1}^{-}
\end{aligned}
$$

where

$$
\begin{gathered}
f^{+}:=\max (f, 0), \quad f^{-}:=\min (f, 0) \\
c_{i-1}:=a_{i-1}-a_{i}-b_{i}^{+}+b_{i-1}^{-}
\end{gathered}
$$

This is called a piecewise-linear action.
Easy to code up (see for example Thiffeault (2010)).

Growth of L

For a specific rod motion, say as given by the braid $\sigma_{3}^{-1} \sigma_{2}^{-1} \sigma_{3}^{-1} \sigma_{2} \sigma_{1}$, we can easily see the exponential growth of L and thus measure the entropy:

Growth of L (2)

m is the number of times the braid acted on the initial loop.

Oceanic float trajectories

Oceanic floats: Data analysis

What can we measure?

- Single-particle dispersion (not a good use of all data)
- Correlation functions (what do they mean?)
- Lyapunov exponents (some luck needed!)

Another possibility:
Compute the σ_{i} for the float trajectories (convert to a sequence of symbols), then look at how loops grow. Obtain a topological entropy for the motion (similar to Lyapunov exponent).

Oceanic floats: Entropy

10 floats from Davis' Labrador sea data:

Floats have an entanglement time of about 50 days - timescale for horizontal stirring.

Source: WOCE subsurface float data assembly center (2004)

Lagrangian Coherent Structures

- There is a lot more information in
 the braid than just entropy;
- For instance: imagine there is an isolated region in the flow that does not interact with the rest, bounded by Lagrangian coherent structures (LCS);
- Identify LCS and invariant regions from particle trajectory data by searching for curves that grow slowly or not at all.
- For now: regions are not 'leaky.'
- (See the work of Haller et al.)

Sample system: Modified Duffing oscillator

+ rotation to further hide two regions. $\alpha=.1, \gamma=.14, \delta=.08, \omega=1$.

Growth of a vast number of loops

Left: semilog plot; Right: linear plot of slow-growing loops.

Clearly two types of loops!

What do the slowest-growing loops look like?

(a)

(b)
(c)

[(c) appears because the coordinates also encode 'multiloops.']

Computational complexity

Here's the bad news:

- There are an infinite number of loops to consider.
- But we don't really expect hyper-convoluted initial loops (nor do we care so much about those).
- Even if we limit ourselves to loops with Dynnikov coordinates between -1 and 1 , this is still $3^{2 n-4}$ loops.
- This is too many... can only treat about $10-11$ trajectories using this direct method.

An improved method: Pair-loops

The biggest problem is that we only look at whether a loop grows or not. But there is a lot more information to be found in how a loop entangles the punctures as it evolves.

(a)

$(4,5)$
00000

$$
\{1,2,3,4,5\} \quad\{1,3\}
$$

(b)

Consider loops that enclose two punctures at once. More involved analysis, but scales much better with n.

Improvement

Run times in seconds:

\# of trajectories	6	7	8	9	10	11	20
direct method	0.46	0.70	6.0	53	462	3445	$\mathrm{~N} / \mathrm{A}$
pair-loop method	9.5	11.6	12.3	13	15	20	128

Bottleneck for the pair-loop method is finding the non-growing loops. (Should scale as n^{2} for large enough n.)

The downside is that the pair-loop method is much more complicated. But in the end it accomplishes the same thing.
See Allshouse \& Thiffeault, Physica D 241, 95-105 (2012).

A physical example: Rod stirring device

[movie 4]

Another benchmark problem: double-gyre

Shadden et al. (2005)

$$
\dot{\mathbf{x}}=\pi A\binom{-\sin (\pi f(x, t)) \cos (\pi y)}{\cos (\pi f(x, t)) \sin (\pi y) \frac{\partial f(x, t)}{\partial x}}
$$

$$
\begin{aligned}
f(x, t) & =a(t) x^{2}+b(t) x \\
a(t) & =\varepsilon \sin (\omega t) \\
b(t) & =1-2 \varepsilon \sin (\omega t) \\
\varepsilon=0.1, A & =0.1, \omega=\pi / 5
\end{aligned}
$$

Double-gyre coherent structures

Conclusions

- Having rods undergo 'braiding' motion guarantees a minimal amount of entropy (stretching of material lines);
- This idea can also be used on fluid particles to estimate entropy;
- Need a way to compute entropy fast: loop coordinates;
- There is a lot more information in this braid: extract it! (Lagrangian coherent structures);
- Is this useful? We're still looking for a good data set to try it on! No joy so far...
- We're developing Matlab tools - braidlab.
- Also applicable to granular media Puckett (2012).
- See Thiffeault $(2005,2010)$ and Allshouse \& Thiffeault (2012).

This work was supported by the Division of Mathematical Sciences of the US National Science Foundation, under grant DMS-0806821.

References

Allshouse, M. R. \& Thiffeault, J.-L. 2012 Detecting Coherent Structures Using Braids. Physica D 241, 95-105.
Bestvina, M. \& Handel, M. 1995 Train-Tracks for Surface Homeomorphisms. Topology 34, 109-140.
Binder, B. J. \& Cox, S. M. 2008 A Mixer Design for the Pigtail Braid. Fluid Dyn. Res. 49, 34-44.
Bowen, R. 1978 Entropy and the fundamental group. In Structure of Attractors, volume 668 of Lecture Notes in Math., pp. 21-29. New York: Springer.
Boyland, P. L. 1994 Topological methods in surface dynamics. Topology Appl. 58, 223-298.
Boyland, P. L., Aref, H. \& Stremler, M. A. 2000 Topological fluid mechanics of stirring. J. Fluid Mech. 403, 277-304.
Boyland, P. L., Stremler, M. A. \& Aref, H. 2003 Topological fluid mechanics of point vortex motions. Physica D 175, 69-95.

Dynnikov, I. A. 2002 On a Yang-Baxter map and the Dehornoy ordering. Russian Math. Surveys 57, 592-594.
Finn, M. D. \& Thiffeault, J.-L. 2011 Topological optimisation of rod-stirring devices. SIAM Rev. 53, 723-743.
Gouillart, E., Finn, M. D. \& Thiffeault, J.-L. 2006 Topological Mixing with Ghost Rods. Phys. Rev. E 73, 036311.
Hall, T. \& Yurttaș, S. Ö. 2009 On the Topological Entropy of Families of Braids. Topology Appl. 156, 1554-1564.
Kolev, B. 1989 Entropie topologique et représentation de Burau. C. R. Acad. Sci. Sér. I 309, 835-838. English translation at arXiv:math.DS/0304105.
Moussafir, J.-O. 2006 On the Entropy of Braids. Func. Anal. and Other Math. 1, 43-54. arXiv:math.DS/0603355.
Puckett, J. G., Lechenault, F., Daniels, K. E. \& Thiffeault, J.-L. 2012 Trajectory entanglement in dense granular materials. arXiv:1202.5243.
Thiffeault, J.-L. 2005 Measuring Topological Chaos. Phys. Rev. Lett. 94, 084502.
Thiffeault, J.-L. 2010 Braids of entangled particle trajectories. Chaos, 20, 017516.
Thiffeault, J.-L. \& Finn, M. D. 2006 Topology, Braids, and Mixing in Fluids. Phil. Trans. R. Soc. Lond. A 364, 3251-3266.
Thurston, W. P. 1988 On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Am. Math. Soc. 19, 417-431.

