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and vice versa, with emphasis on relation(s) and dynamical aspects
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Some relevant aspects of the

Euler versus Lagrange issues in turbulence
This file is based on three ingerdients:

* my short intro at the beginning,
“ my presentation at the discussion 2 (the topages of the text for discussion 2 sent before the meeting are found on slides B-19)

* Some additions during this discussion.
The latter is again mine as nobody volunteered fo make any notes. for this reason (not the only one) the discussion is
to some extent a discussion of ‘ome man”. * These are also the reasons I added some specific references and also

below a list of relevant sections , subsections, etc, from my book which will be referenced in the text as T2009:

A. Tsinober 2009 An informal conceptual introduction to turbulence, xix+464 pp., Springer.
I venture to mention already here the following relevant sections which are referred to in text below:

3.6 Eulerian versus Lagrangian descriptions , pp 57-61.

4.2 Kinematic/Lagrangian chaos/advection, pp. 85-89.

4.3 On the relation between Eulerian and Lagrangian fields , pp. 89-90.

5.4.4 Is cascade Lagrangian or Eulerian, in some decomposition, phase space or whatever? Cascade of passive objects? pp. 118-119.
6.6 Nonlocality , pp. 163-182.** rkady Finober
6.7.2 The Lagrangian acceleration versus its Eulerian components, pp. 185-189 * ** As part of section 6.7 Acceleration and related matters , pp. 182-193.

9.3.2. Differences in structure(s) and 9.3.4 Issues associated with the E-L relations. Analogy between genuine turbulence and Lagrangian chaos , pp. 302- 306 as part of
section 9.3 Genuine turbulence versus passive "turbulence”, pp. 298 -307 inthe Chapter 9 ANALOGIES, MISCONCEPTIONS AND ILL-DEFINED CONCEPTS, pp. 295-320. Amﬁfﬁfm al

13.5 Pure Lagrangian description , pp. 381-382. ol

* Of course it is not late to add comments, etc. , which will be added to the WP site .

** See also a short subsection 1.3.5 Nonlocality, pp. 28-30; subsection 5.3 Anomalous scaling, pp. 102 — 110 with subsections 5.3.1 Inertial range. Is it a well-defined concept?, pp. 103-107 and
5.3.2 On the multi-fractal models, pp 107-110; subsections 10.3.3 Nature of dissipation—is it (un)important? pp. 335- 337 and 10.3.4 Roles of viscosity/dissipation, pp. 337-338 In the

subsection 10.3 Turbulence versus mathematics and vice versa, pp. 329-347

***Note that a similar subsection 6.7.1 The relation between the total acceleration and its local and convective components in the first edition (pp. 131-135) contains some info on correlations removed
from the second edition , but all can be found in the paper by Tsinober, A., Vedula, P., and Yeung, P.K. (2000) Random Taylor hypothesis and the behavior of local and convective accelerations in isotropic
turbulence, Phys. Huids, 13, 1974-1984.
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Correlations after experiments done ig

6loody 6ad*. Only prediction is science.

FRED HOYLE 1957, The Black Cloud, Harper, N-Y.

*These are “postdictions”
... there are a variely of models of lugher statistics that have meager or nonexistent deductive support

from the NS equations but can be made fo give good fils fo experimental measurements . .. Multifractal
cascade models raise the general issue of distinction between what is descriptive of plysical behavior and
what can be used for analysis of data ... Multifractal models may or may not express well the cascade
plysics at large but fmite Reynolds mumbers, . Nelocity increments (let alone structure functions and their
scaling if such exists) are not the only objects of interest. On top of this they b ot constitute 2
representation basis for a flow (Goto and Kraichnan, 2004, Turbulence and Tsallis statistics, Physica, D193, 231-244

Why on earth should we perform so many elaborate measurements of various scaling exponents
without looking into the possible concomitant physics and/or without asking why and how more
precise knowledge of such exponents, even assuming their existence, can aid our understanding of

turbulent flows? The very existence of scaling exponents (in a statistical sense), which is taken for
granted, is a problem by itself (12009 pp. 114, 119).




Discussion Topic 2
SWEEPING AND RELATED ISSUES INCLUDING

RANDOM TAYLOR HYPOTHESIS

The issue is only seemingly “narrow”. In reality (as was seen during the discussion) it is directly related
to the problems like nonlocality and comparative discussion of the kinematical and dynamical aspects
associated with pure Eulerian and pure Lagragian descriptions with the emphasis on conceptual aspects.
Some specific problems requiring Lagrangian treatment along with the Eulerian one are pointed out and
some nontrivial questions concerning the Lagrangian setting in turbulence are posed .

As mentioned this file is based mainly (but not only) on three ingerdients; i) my short
intro at the beginning, ii) my presentaiton af the discussion 2 and iii) the additions
during this discussion. The latter is again mine as nobody volonteered to make any
notes. for this reason (noy the only one) the discussion is fo some extent a discussion of
“one man’. These are also the reasons I decided to add more references including
systematic references on pages, sections, etc. , from my book:

A. Tsinober 2009 An informal conceptual introduction to turbulence, xix+464 pp., Springer.

* Of course 1t is not late to add comments, etc. , which will be added to the WPI site .




Some generalities and important
relevant questions/issues




The Lagrangian description of fluid flows is physically more natural
than the Eulerian one, since it is related most directly to the motion of
fluid elements. Nevertheless, mostly technical difficulties (both in
physical and numerical experiments) strongly hindered use of the
Lagrangian approach in most of fluid dynamical problems. The
traditional problems for which Lagrangian description is considered
especially appropriate are fransport and mixing m diverse
applications, e.g. geophysical and environmental, cloud formation,
chemical technology, combustion and material processing,
sedimentation, bio-medical and recently microfluidics, and many
others. In most of the above issues the concern is with the Aimematic
aspects, 1.e. with what is called today “passive turbulence”.




Another aspect is associated with the dynamics of inviscid fluids, such as theoretical problems of Euler
equations, inviscid vortex dynamics and vortex methods, stability, dynamics of interfaces and surface
waves, compressible flows. Though these issues seem to have little to do with genuine turbulence, there
are views/beliefs that such things like possible singularity formation and collapse in Euler flows and that
the infinite Reynolds number limit of turbulent flow is described by singular solutions of Euler equations .
Some people regard these as “very attractive scenarios”. They are definitely very attractive and
mathematically beautiful (since Onsager 1949), but it is more than not clear whether they have anything
to do with real turbulence at whatever large Reynolds numbers. One cannot take seriously claims like

“ Ihe existence of such near singularities for turbulent velocity fields at high Reynolds number has been
confirmed by data from experiments and simulations” o “Observations from experiments and
simulations suggest that material objects advected by such a rough velocity become fractal..”, since all
the experimental and numerical evidence is obtained at moderate Re, at which no singularities, fractal
structure, etc. are expected and observed (if such exist at all). This evidence cannot be used as
supporting any models at infinite Re, , which in principle cannot be confirmed or disproved by
experimental or numerical evidence.




In other words the main concern is in the eva/ution of passive abjects (fluid particles,
passive scalars such as dispersing contaminants, chemical species, temperature, moisture: passive vectors

such as material lines, (weak) magnetic field in an electrically conducting fluid; passive surfaces such as

material surfaces, and in some cases reacting surfaces and turbulent flames; material volumes) in
random fluid flows and more recently in any Lagrangian chaotic flows which among
multitude of others™ include most of laminar flows in Eulerian setting®

An essential point is that the evolution of passive objects obeys linear equations in which the velocity field
does not “know' anything about the presence of these objects and therefore the velocity field is considered
as given a priori be it a real fluid flow field or some artificial one. There is no involving phenomenon as
pressure™™, This does not mean that the problems of the evolution of passive objects are simple. The main
complication and simultaneously rich variety of phenomena comes from the fact that the velocity field
enters as a coefficient in front of the spatial derivatives, 1.e. it is due its multiplicative character, so that
statistical problems become in a sense nonlinear.

™ As mentioned the above qualification includes all artificial velocity fields both random and/or multi-scale or not. The field of particle trajectories is (can be seen) as a passive
object: it is a Lagrangian signature of the underlying velocity field of any nature be it genuinely turbulent, or Lagrangian chaotic such as E-Laminar, synthetic random or not, restricted
Euler, kinematic simulations of Lagrangian chaotic evolution, turbulent-like multiscale fields, including real E-laminar flows at Re~0 from linear Stokes equations with random forcing,
flows in porous media, micro-devices, to name some.

**Hence " shocks' in the form of ramp-cliff structures just like in the Burgers equation.




There is little (if any) treatment of dynamical aspects of turbulent flows (e.g. those
corresponding to those described by NSE in Eulerian setting) /z Lagrangian seffing (one of

our main concerns here). One of the reasons is the view that A principaé oGjective
of any theory of fCuid motion is the prediction of the spread of
matter or "tracer” within the fCuid. BENNET 2006
But the main reasons seem to take their origin in the difficulties to handle the Lagrangian
equations (with non-zero viscosity) and related issues.
In contrast , on the technical side, since in a pure Lagrangian setting the equations are
mtractable™(so far) in order to obtain true (not modelling!) Lagrangian information, one
typically solves the problem in Eulerian setting (i.e., using NSE) and using this information
together with the equation relating the two ways of description

dX(a,t)/ot = u[X(a,t); ] {E-L}
one can obtain the Lagrangian evolution of any fluid particle, i.e.the Lagrangian velocity
field, v(a,t) = dX(a,t)/ot, is related to the Eulerian velocity field, u(x,t), as
v(a,t) = u [X(a,t);t].

*but allow posing of nontrivial and important questions.




The {E-L} relation above is of utmost importance

since it is not itegrable even for simplest laminar Euler fields

with the exception of very simple flows such as unidirectional ones.

Thus for a wide class of (almost all) laminar flows in the Euelerian setting (i.e. with the Eulerian
velocity field, u(x:t) not chaotic, regular and laminar) the Lagrangian velocity field v(a,t) = u[X(a,t);t]
(as any other property of fluid particle) is chaotic because X(at) is chaotic! * This fact is of utmost
importance issues like the relation (s) between the Eulerian and Lagrangian characteristics of the same
flow field (see below)

It has to be emphasized that this chaotic behavior is of purely kinematic nature resulting solely from the
equation {E-L} (and various equations for passive objects - reminding again - linear in Euler setting) and
has nothing to do with dynamics, i.e. genuine (as NSE) turbulence.

The field of particle trajectories is a passive object: it is a Lagrangian signature of the underlying velocity field of any nature be it genuinely turbulent, or

Lagrangian chaotic such as E-Laminar, synthetic random or not, kinematic simulations of Lagrangian chaotic evolution, turbulent-like multiscale fields,
including real E-laminar flows at Re~0 from linear Stokes equations with random forcing, flows in porous media, microdevices, to name some.




The lmportant points as concerns turbulence are as follows
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with lhe L-turbulence which may be a purely kinematic one . In other words the flow can
be purely L-turbulent (i.e. E-laminar) as metioned above and illustrated in the
examples below. However, if the flow is E-turbulent (i.e. Re >> 1) it is L-turbulent as
well.

Two important consequences:

* studying Lagrangian statistics only may not provide adequate information of the L-
statistics of genuine turbulence as not necessarily containing its pure dynamical
“stochasticity”

* the structure and evolution of passive objects (including fluid particles ) in genuine
turbulent flows arises from two (essentially and unfortunately inseparable) contributions:
one due to the Lagrangian chaos and the other due to the random nature of the (Eulerian)
velocity field itself.

Rll the above brings in the questions listed below.




* Is it true that dynamical issues per se

can be treated satisfactory in Eulerian
setting only?

* Is there any need to use for this
purpose the Lagrangian setting too?

* Are there problems which require such

an approach.

* In what sense are the E- and L-settings
equvivalent (if they are? And what is
(the meaning of ) the relation between

the two?

More specific questions are the theme of present Discussion
(2) , see below




A bit of history

Is Lagrangian setting Lagrange’s or Euler’s?




One owes to €uler the firgst general formulas for fCuid motion ... presented in the
gimple and Cuminous notation of partial differences... By this discovery, all (luid
were integrable, one could determine completely, in all cases the motion of a fluid
moved By any forces... LAGRANGE Mecanigue analiique, Paris, 1788, Sec X. , 271

Of course, fCuid mechanics can, in principle, 6e worked entirely in the Lagrangian*
frame...even neglecting viscous forces... yield awgward moment equations. CORRSIN
1962.

The use of the viscous Lagrangian equations in turbulence theory is stiCl a matter
for the future. MONIN AND YAGLOM 1971

Though the Lagrangian description of the fCow ... Aas many attractions
... it i8 generally unwieldy to work with. Even the Rinematic tash of determining
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generally intractable. SOWARD AND ROBERTS 2008

Jt is clear that some agpects of the fCuid motion are eagier to understand in the
Eulerian frameworl while others are eagier to describe in the Lagrangian
frameworh. FRIEDLANDER & LIPTON-LIFSCHITZ 2008

What one sces is real.The proGlem is interpretation

*In fact what is called “Lagrangian desription is also due to Euler, see Lamb, 1932. A detailed account on the ‘misnomer’ by which the‘Lagrangian’ equations
are ascribed to Lagrange is found in Truesdell, 1954. Aumematics of vorticity, Indiana University Press, Bloomington.




H.LAMB 1932, Hydrodynamics, Cambridge Univ. Press, pp 2-3

3. The equations of motion of a fluid have been obtained in two different
forms, corresponding to the two ways in which the problem of determining
: : q : . :
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+  Principes généraux du mouvement des fluides,” Hist. de I' Acad. de Berlin, 1755.
“ De principiis motus fluidorum,’’ Novi Comnr. Acad. Petrop. xiv. 1 (1759).

P. FRANK 1935, e differential- und ifegral Gleichungen der Mechanik und Physi, 21 ed., Part 2 Vieweg; L.D.LANDAU AND
L.D.LANDAU AND E.M.LIFSHITS 1959 Fuid Mechanics, Pergamon and many others.

A detailed account on the ‘misnomer’ by which the ‘Lagrangian’ equations are
ascribed to Lagrange is found in C. TRUESDELL 1954, [fe Amematics of
Vorticity, Indiana University Press, pp. 30-32 and references therein (see three nest slides)
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2In this work we eschew the general misnomer by which X, Y, 7 are called
“Lagrangian” co-ordinates, while 2, y, z are called “Lulerian” co-ordinates. The
origin of this incorrect usage is as follows.

By the middle ninetecnth century the history of fluid dynamies in the eighteenth
century had apparently sunk into obscurity. Iiuler’s papers were not often read, of
his results which were not forgotten several were attributed to more recent authors
who had appropriated them without acknowledgement or diseovered them afresh,
and indeed his supreme achievements in mathematies, mechanies, and mathematical
physics were undervalued then, though not so mueh as now. The erroneous termi-
nology still current was introduced in the posthumous memoir of Dirichlet {1860,
1, Introd.], edited by Dedckind, where [1757, 2] was quoted as the source of the
“Fulerian” method, while it was stated that Lagrange in the Méchanique Analitique
(1788, 1, Part II, Sect. IT, §§4-7] had introduced the “Lagrangtan” method, but
had immediately converted the resulting equations to “Bulerian” form. Although in
the next vear Hankel (1861, 1, §1] stated that his teacher Riemann had told him that
Euler had introduced the “Lagrangian” method in {1770, 1], one year's priority has
been sufficient to perpetuate the error. '




Riemann's attribution is correct, but the references quoted are not the earliest,
either for Fuler or for Lagrange. Subsequent writers on hydrodynamies have followed
Hankel in adopting the printer’s error on the title page by which [1770, 1] is dated
1759, while the correet date is 1769; Lagrange’s first exposition of the “Lagrangian”
deseription is not in the Méchanique Analilique but actually in {1762, 3, Chs. XI,
XLIV, XLVIII, LII]. The whole matter is easily clarified, however. In o letter
1862, 2], written to Lagrange under the date 27 October 1759, Euler after expressing
his admiration for Lagrange’s first memoir on the propagation of sound stated that
one had reason to doubt that propagation in two or three dimensions would follow
the same Jaw as in the one dimensional case, since he had already found the funda-
mentul equations to be of different form. The equations he gives are the linearized
equations of plane flow of a perfect fluid expressed in torms of the variables X, T,
(That the date of Euler's discovery of the material desertption is 1759 or eatlier is
shown also by [1766, 1, §$4-13, 31-40], & memoir dated 1759, In [1767, 1], written
in 1750-1731, Fuler for plane motions had used a deseription partly spatial and
partly material.)




SUR LA REDUCTION A UN PRINCIPE VARIATIONNEL
DES EQUATIONS DU MOUVEMENT

par R. GERBER (Grenoble).

1. On sait qu’il n’est pas possible par la considération du champ
des vitesses & un instani, d’opérer dans le cas général la réduction &
un principe variationnel des équations du mouvement non lent d’uan
fluide visqueux incompressible(").

Il semble intéressant de voir si un tel principe ne pourrait pas
éire obtenu en envisageant non plus le fluide & une époque, mais
en suivant une certaine masse /b dans son mouvement.

Ayant défini un ensemble § de mouvementis virtuels de Jdb entre
deux instants ¢, et {, on tentera de construire une fonction ¥, définie

sur 8§, et telle quef %dt soit stationnaire pour tout élément de &
tlu; ré'“f'ﬁ 165 éqd&t OIi3

On montrera qu'on aboatit également dans cette voie & un résultat
négatif pour le cas général, du moins si on se limite & une certaine
classe de fonctions .

De plus la méthode snivie nous conduira & exprimer avec les
variables de Lagrange les équations de Navier pour un fluide visqueux
incompressible et on indiquera une méthode rapide pour obtenir
ces équations.

2. Soit un mouvement réel d’'une masse b du fluide enire les
époques { el ¢, correspondant & certaines conditions initiales et aux
limites et sous I'action de forces extérieures dépendant d’un potentiel.
Notons 9, le domaine occupé a I'instant ¢, I, sa frontiére (on pourra
supprimer l'indice ¢) ; 9, et S, pour D, et Z,,. En particulier X pourra

indéfinies du

188 du mouvement,

(1) Voir H. ViLtar. Legons sur les fluides visqueuw, p. 103,

Gerber, R., (1949) Sur la réduction a un principe
variationnel des équations du mouvement d'un fluide
visqueux incompressible, Ann. fust. Fourser, 1, 157-162.

CORRSIN, S. 1962 Theories
of turbulent dlspersmn, mn: Favre,
A., editor, Mécanique de /a
furbulence, Proceedings of the
Colloques Internationaux du

CVRS, Marseille, 28 Aug.—2
Sent 1961 Publ. CNRS No 108,

Paris, pp. 27-52.
MONIN, 4.S. AND

YAGLOM, A4.M. 1971
Statistical fluid mechamics, vol 1
Ch.9, MIT Press;  2md
Russian edition 1992
Gidrometeoizdat, St. Petersburg,




We mention already here the 1ssue of special interest (for the
forthcoming discussion) on L - E relation and in what sense
are the E- and L-settings equvivalent (if they are!)?

Indeed, the ‘more chaotic’ nature of the Lagrangian setting
(" the relative orderliness of Eulerian representation over

Lagrangian®) , 1s traced back to early Lagrangian simulations
by Amsden and Harlow 1964, see also Harlow, 2004.

Therefore it 1s a natural conjecture that the pure Lagrangian
dynamical equations (so far intractable for viscous flows) are
more rich than their (E)Navier—Stokes counterpart. The
former being equivalent to the latter plus the equation relating
the Eulerian and Lagrangian descriptions.

Amsden, A.A. and Harlow, F.H. (1964) Slip instability, Phys. Fluids, 7, 327-334
Harlow, F.H. (2004) Fluid dynamics in Group T-3 Los Alamos National Laboratory (LA-UR-03-3852), J.
Comp. Phys., 195, 414-433.




Part [ of the discussion 2
Sweeping decorrelation

lypothesis (SDH) and/or

Random laylor hypothesis
(RTH) and related issues




The basis of SDH/RTH is comprised by the Aypothesiswhich essentially originates from K41, in words
of Kraichnan 1959 : Aolmagorov s basic assumption (Kolmagorov 1941) is essentially that the ifernal

dynamics of the sufficiently fine-scale structure (in x-space) at high Reynolds numbers should be
independent of the large-scale motion. The latter should in effect. merely convect. bodily™, resions
small compared to the macro scale. *™ Consequently, it is assumed that (Tennekes 1975) Zalor’s
“Trozen-turbulence” approximation should be valid for the analysis of the consequences of large-scale
advection of the turbulent microstructureand that the microstructure is statistically independent of the
energy conlamimng eddies. The latter seems too strong as compared to the statement that /¢
microstructure (whatever this means) is statistically decorrelated from the energy containing eddies.
The important point is that all the above remain hypotheses and never have been proven. There is some
recent experimental evidence that these hypotheses are conceptually mcorrect. Results ie k=3 spectra
are insufficeat for validation these as any theories and may well be (and some really are) the RRWR.

* Note that this is what is called sweeping which is claimed to have purely kinematic nature (which is erroneous) — this is why
Lagrangian in the first place and even claims that it preserves the shapes of the advected small scale eddies and thus has no effect on the
turbulence energy spectrum in the Eulerian frame.

**Similar statements were made by Kraichnan 1964: An underlying assumption of Kolmogorov theory is that very large spatial scales of
molion convect very small scales without directly causing significant infernal distortion of the small scales. The assumption usually is
considered to be consistent with, and fo imply, statistical independence of small and farge scales, Tennekes 1975 and many others; for a
good list of references see Gkioulekas 2007.




In view of the above there are a number of questions which the “simpleton Wilson” would like to ask and |

discuss.

1. Isthe sweeping really kinematic? Is it true that small scales are statistically mdependent of the small scales? Or even more
rebelliously — do small scales have any impact on the large scales except of overall dissipation? Do large-scale motions merely
convect, bodily™, regions small compared to the macro scale, i.e. it preserve the shapes of the advected small scale eddies. A short
answer is that the claims above are erroneous due to direct and bidirectional couling on smal | and large scales. This is essentially
nonlocality . Some examples are given below , for more see (T2009, pp 163-182.) and references therein

2. Theoreticians have reasons to “remove” in some sense the sweeping (hence the crucial function of the hypotheses) . Do they really
remove the sweeping or they just think that they do so? After all the physical system does not care about how WE do represent it.,
ALL the scales including the large ones are there whatever the representation.

The question is in what sense the equations with removed sweeping are equivalent to the original ones and/or how the small scales
do know about the removed large scales (or they shouldn’t and/or are not supposed to) or are the small scales in the equations with
removed large scales equivalent to the small scales in the original equations? Or is SDH/RTH the only “answer” to the latter
question?

3. Related to 2. on the need of removing the sweeping : why nature does not need this removal in order to produce the right resullt?

4. The SDH/RTH - which is kind of decomposition - ignores too much from the interaction (in the first place dynamical) between the

large and small scales, i.e.itis “too kinematic'. It is really justified except being convenient for theoreticians?

* See also a short subsection 1.3.5 Nonlocality , pp. 28-30; subsection 5.3 Anomalous scaling, pp. 102 — 110 with subsections 5.3.1 Inertial range. Is it a well-defined concept?, pp. 103-107 and
5.3.2 On the multi-fractal models, pp 107-110; subsections 10.3.3 Nature of dissipation —is it (un)important? pp. 335- 337 and 10.3.4 Roles of viscosity/dissipation , pp. 337-338 In the
subsection 10.3 Turbulence versus mathematics and vice versa , pp. 329-347




Part [l of the discussion 2
Relation(s) between Lulerian

and Lagrangian descriplions -
representations of turbulent flows




1. Except of the formal kinematic relation

OX a, ol =— u|A(a,
where u(x,t) is the Eulerian velocity field and X(a t) is the Tuid particle
trajectory and a is its label , the common question(s) include in the first place
statistics in the broad sense.
The usual question is whether “simple” relations do exist between the E — statistics
and L — statistics. This is a long-standing and most difficult problem. The general

reason is because the Lagrangian field 3X(a.,t) (and Lagrangian velocities
v[X(a, t); t]) is impossibly complicated functional of the Euler velocity field
u(x,t). Roughly, there is a general relationship in terms of path (Feynman,
functional) integrals, but this does not help much, if at all. For more on these issues
see Monin and Yaglom (1971, 1, Ch. 9, pp. 568--578), also Bennet (2006, pp. 21-
24). The start was made by Corrsin (1959a,b) and Lumley (1962a,b)




One can even claim that, generally there cannot be a simple relation and in a sense even

Most of laminar flows in the Eulerian setting (E-laminar) are Lagrangian chaotic (L-
turbulent) due to non-integrability of the relation 63 (a,t))/ot = u[X(a,t); ]
In other words, though the Eulerian velocity field, u(x:t) is not chaotic and is regular
and laminar, the Lagrangian velocity field v(a,t) = u[X(a, t); t]) is chaotic
because 3 (a.,t) is chaotic. Thus almost in all E-laminar but L-turbulent flows the
Lagrangian statistics has no Eulerian counterpart. This can be seen as an indication that
the pure Lagrangian dynamical equations (LNSE) are more rich (“more chaotic”) than
their Navier--Stokes counterpart (ENSE) so that one is tempted to conjecture that
LNSE is equivalent to ENSE + E-L. This is not trivial.

2. The differences are exhibited also in structure(s) and flow visualization (what do we
see?) — the L-fields may exhibit different flow patterns for the same E-field.
| will bring some results for the item L. and examples as concerns the item I1.




References to both parts, see also references below — those mentioned in a short form are found in full in T2009
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1. Is the sweeping really kinematic? s it true that small scales are
statistically independent of the small scales? Or even more
rebelliously — do small scales have any impact on the large
scales except of overall dissipation?




Statistical dependence of small on large scales (frequently assumed not to exist

Enstrophy %, total strain $ and squared acceleration a’ conditioned on magnitude of
the velocity fluctuation vector, Field experiment, Sils-Maria, Switzerland, 2004,

Re, = 6800 (Gulitskii et al. 2007, ./ Auid Mectk, 589, parts 1-3, 57-123)

— =2 — — &
2
22l ~—pg? | Estoply 02 o n gl Dt | squa:ed_wlqrahnn.a? ......
4 £

2 Lll-orsg, | tollsmins? K7 |
-, Iy :
2‘ 18} fit f!‘l':'m ........................................................ g DRk
E!]16 I i

R e s st S R SR S R S R e A R UG it T u
g | a0.746 4|
o 1.4 b=0154 ............................................................... b
0 I R T :
!g 1.2 \, ..... E 1.5_
= =
S e ARG £
o =
U g1

11 . : [
0.5 1 1.5 2 T 08 1 1.5 2
H'C 1o
i i




Experiment 102, SNM12 SNMI11 Falcon Jet
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a p, Equivalent Hosokawa’s
- relation 2007

(u,u_) =er/30

NOTE HERE THE CORRELATION BETWEEN
THE LARGE AND SMALL SCALE QUANTITIES !

2u, = u(x + r) + u(x), 2u_=u(x + r) — u,(x) = Ay,
u,(x) is the longitudinal velocity component

M. Kholmyansky, and A. Tsinober 2008 Kolmogorov 4/5 law, non-locality and sweeping decorrelation hypothesis, Physics of Huids, 20, Physics of Huids, 20, 041704/1-4




The role of kinematic relations in the issue of nonlocality goes far beyond their use in the nonlocal interpretation of the
Kolmogorov 4/5 law. There exist many kinematic relations of several types™

e.g. <(Au)">= -2<u,(Au)"'>= 2<u,(Au)"'>; n>2

1.1 5 5 ;
e y==c:u2u_::=,-’=c:;¥_2::= 5
1.05 N S e _
—9—y=_~:‘:u1u_::=,n’=t:u_z::= | n=2
A ((Au)* ) = -2(u,Au)
| _ | | = 2(u,Au)
0_95 ................. ................. ................. ................. ................ _

0.9
Logl10{r/n)

>X<Kholmyansky M., Sabelnikov V. and Tsinober A 2010 ) Local versus Nonlocal Processes in Turbulent Flows, Kinematic Coupling and General Stochastic Processes,
in: Jurbulence and lnferactions Proceedings the 112009 Conference Michel Deville ,Thien-Hiep Le, Pierre Sagaut (Editors) pp 216-221, Springer.




The nertial range (IR)
is not a well defined concept

The conventionally defined inertial range is contaminated by both larger
scales and strong dissipative events from the conventionally defined
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KFAR GLIKSON MEASUREMENT AIRBORNE SILS-MARIA EXPERIMENT,
STATION, ISRAEL, THE PROBE ON EXPERIMENT, GERMANY, THE SWITZERLAND, THE PROBE ON
THE MAST (A), 1999 PROBE IN THE FLIGHT (B) , 2000 THE LIFTING MACHINE (C), 2004

Experiment 102, SNNMN12 SNNM11 Falcon Jet

Israel J
The Tayvlor micro-scale Reynolds numbers., FRe,. for the experiments.

Rey - 1073 10.7 5.9 3.4 1.6 0.05







THE PROBE

Manganin is used as a
material for the sensor
prongs instead of
; tungsten because the
N & temperature coefficient
\ = of the electrical
c

. .7 resistance of manganin
/ IS 400 times smaller than

The tip of the probe that of tungsten.




HISTOGRAMS of the increments of the longitudinal velocity
component for the full data and the same data in which the
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SCALING EXPONENTS, C , of

——¢=30| Ay= u(x+f)—u(x) /+ structure functions for the

Al LAl >~ longitudinal velocity component for

S -

the full data and the same data in
which the strong dissipative events
with different thresholds were

removed

An event Au = u(x+r)-u(x)

is qualified as a strong dissipative if

y | | at least at one of its ends (X, x+T)

=4 & & 5 g theinstantaneous dissipation
Order, p, of the structure functions €> q < 8) fOI' q >1

The ‘anomalous scaling’ is not and attribute of the conventionally defined inertial range (CDIR) and is
not a manifestation of IR intermittency. Itis due to the strong dissipative events within ! the CDIR.
No need for MF “formalism” ™?

For more see T2009, pp. 102-110 and references therein, also Borisenkov, Y., M. Kholmyansky, M., Krylov, S., Liberzon, A. and
Tsinober, A. (2011) Super-miniature multi-hot-film probe for sub-Kolmogorov resolution in high-Re
turbulence, Journal of Physics: Conference Series, 318, 072004.




The 4/5 law Is not a pure inertial relation af large Re

”(I) = —(4/5)(8)1: + 6vdS,/(¥)/dr,

Syl U Ay = [u(x+r) —u(x)]r/r,
A cruclal pomt here is that the negligible (and neglected at large Re) viscous term
6vd.S,!(x)/dr, inthe Kolmogorov 4/5 law at large Re does not contain ALL the
viscous contributions. Namely, strong dissipative events present in the structure
function S.(x) itself in the IR do contribute to the 4/5 law and keep the 4/5 valid:
without the dissipative events just mentioned the 4/5 law does not hold! Removal of
the strong dissipative events (STE) leadsto ) a decrease of —(45)(<)r below
unity, which means that the STE make a positive contribution to the energy transfer
and ##) an increase of the scaling exponent above unity , see next slide

In this sense the 4/5 law is not a purely inertial law.

4 7S, 3 [ (15>
Salr.t) = ——¢&r + hrf‘, Sl ‘. M
r” Jo

) ~dr’, Eq (34.20)p.139 Landau and Lifshits, 1987
J ar
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The subgrid scale energy flux 11

I1(x;x)=-T; [Si]s Ta=[wug]-[u;][w,]
[...]- a Gaussian one-dimensional filter of width r
The results shown here are by necessity of qualitative nature as we used one-dimensional
which was a standard Gaussian filter of width r
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Contributions of strong dissipative events .
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Borisenkov, Y., M. Kholmyansky, M., Krylov, S., Liberzon, A. and Tsinober, A. (2011) Super-miniature multi-hot-film probe for sub-Kolmogorov resolution in high-Re turbulence, Journal of Physics: Conference Sertes, 318, 072004



All the above shows that the conventionally defined mertial range
is not well defined . On the simplest level this means that it is contaminated
by strongly dissipative events (along with large scale events either) so the

one cannot employ in dimensional anlysis the standart variables from the
K41.

& BET

It is likely, therefore, that the same is true of Lagrangian setting, so that
removing (from the statistics) will result in the scaling £t so far not
observed for the second order Lagrangian structure. This is the bet

| proposed during the discussion at May 10.




1. Is the sweeping really kinematic? Is it true that small scales are statistically
independent of the small scales? Or even more rebelliously — do small scales

have any impact on the large scales except of overall dissipation? Do large-
scale motions merely convect, bodily *, regions small

compared to the macro scale, i.e. it preserves the shapes of the
advected small scale eddies ?

In view of the above the answer is negative , see also the two
next slides.




Evolution of a tetrahedron with edge of =4nat t=0 (courtesy Beat Luethi)
Li, Y., Perlman, E., Wan, M., Yang, Y., Burns, R., Meneveau, C., Burns, R., Chen, S., Szalay, A. & Eyink, G. 2008
A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. ./ Jurbufence, 9 (31) 1-29.
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Evolution of a tetrahedron with edge of dnatt=0 (courtesy Beat Luethi)
Li, Y., Perlman, E., Wan, M., Yang, Y., Burns, R., Meneveau, C., Burns, R, Chen, S., Szalay, A. & Eyink, G. 2008

A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. ./ urbulence, 9 (31) 1-29.




In view of the above there are a number of questions which the “simpleton Wilson” would like to ask
and discuss.

1. Is the sweeping really kinematic? Is it true that small scales are statistically independent of the small scales?

Or even more rebelliously — do small scales have any impact on the large scales except of overall dissipation?

Do large-scale motions merely convect, bodily *, regions small compared to the macro scale, i.e. it preserve the

shapes of the advected small scale eddies

2. Theoreticians have reasons to “remove” in some sense the sweeping (hence the crucial function of the hypotheses) .
The question is in what sense the equations with removed sweeping are equivalent to the original ones and/or how the small
scales do know about the removed large scales (or they shouldn’t and/or are not supposed to) or are the small scales in
the equations with removed large scales equivalent to the small scales in the original equations? Or is SDH/RTH the

only “answer” to the latter question?

3. Related to 2. on the need of removing the sweeping : why nature does not need this removal in order to produce the right
result?

4. The SDH/RTH - which is kind of decomposition - ignores too much from
the interaction (in the first place dynamical) between the large and small
scales, Le.itis “too kinematic'. It is really justified except being convenient
for theoreticians”




More on
In what sense are SDH/RTH valid?
Or wihy - being approxmately correct -

they are erroneous conceptually




It appears that for many quantities (scalars, vectors, tensors) the Lagrangian derivative

=e = b— ‘e 6 'ae 6 k III 1 II|||I ll (AN A 11 ! ll||l ~ II'I‘II

components, 6Q/ot and u,6Q/0x, *. This is true of fluid particle accelerations, e.g.,
(@a*) ad (a®)a*)<<1 with a=a,+a_ and a,= ou/ct,

a,= (u - V)u, and comprizes the basis of the Random Taylor hypothesis in which

Tennekes (1975) put just a = 0. This assumption is local point-wise in space/time and
is not a statistical one. The second assumption made by Tennnekes is of statistical nature,
namely, that the microstructure is statistically independent of the energy contaiming
eddies. The equality 2 = O should and cannot not be understood Literally (just os the
microstructure is not statistically independent of and even not decorrelated from the energy containing eddies), It is
obvious that the acceleration of fluid particles cannot be vanishing, since othrewise one
one may arrive to the conclusion that both equations du/0t + (u - V)u = 0 and

— p'Vp +vV2u = 0 arevalid, which is trivially incorrect ¢

*Galanti, B., Gulitsky, G., Kholmyansky, M., Tsinober, A. & Yorish, S. 2003 Velocity derivatives in turbulent flow in an atmospheric boundary layer without Taylor hypothesis. In : Turbulence and Shear Flow
Phenomena (ed. N. Kasagi, J. Eaton, R. Friedrich, J. Humphrey, M.Leschziner & T. Miyauchi), , vol. II, pp. 745-750.



The smallness of a, e.g. (a?)/a?) and (a*)/a?) << 1 ispossible if there is mutual

| (statistical) cancellation between the local acceleration, 2,, and convective acceleration, a_ ;
a,= 0w/0t, a,= (u - V)u. Since these quantities are vectors, the degree of this mutual
cancellation should be studied both in terms not only of their magnitude but also of the geometry of
vector alignments. Indeed thereisa strong anti-alignment between the two .

3.9
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PDFs of the cosine of the angle between a, and a .. The insets show this dependence with the vertical in log and in the
proximity of cos(a,, a,) ~ — 1. This alignment was observed first in DNS (Tsinober et al 2001) - left, and in
laboratory experiments (Liithi et al., 2005) and in the atmospheric surface layer Gulitski et al. (2007) — right.




An important observation is very high values of -0-97

 correltion between S S 1
= ouw/0tand 2= (u - V)u -1.0t e

In other words the approximation 2 = O is P

very good and becomes better with increasing ) e i P, ac) 1

Reynolds numbers. This is true also of the T Y .u':’ﬁ“ - ceal,

validity of the Random Taylor Hypothesis (RTH) | 10’ Y e

or sweeping decorrelation hypothesis (SDH). SRR TP S da ada. ad
. . . orrelation coetficients between a, and a_and a; an
The important point is though both are a,., DNS (Tsinober 2001, Tsinober eta12001) The latter

approximafely kinematic, this - as mentioned i e colongidal part of a_ . Simlar results for a, and a_
above - does not mean that the non-kinematic  obtained in laboratory experiments (Liithi et al., 2005) and

“small difference” justifies the validity of the in the atmospheric surface layer Gulitski et al. (2007)
equations ou/ot + (u - V)u = 0 and

p'Vp +vViu =0, Itis this “small | Tpyg sweeping cannot be considered as just

non-kinematic difference” which is a kinematic effect. The dynamics involved
mostly responsible for all the dynamics | jg of yimost importance!

in the Eulerian representation.




A critical remark on the nature of Kolmogorov-Kraichnan-Tennekes ‘decomposition”:

The sweuing decorrelaton and/or random Tarlor hvoothesis

There are two main ingredients in the (Eulerian) decorrelation: 1) — the sweeping of microstucture by
the large-scale motions (and associated kinematic nonlocality), i) — and the local straining (which is
roughly pure Lagrangian). As seen from above this kind of “decomposition’ is insufficient as it is missing
an essential dynamical aspect — the interaction between the two™ The random Taylor hypothesis (and,
of course, the conventional Taylor hypothesis) lack/discard this aspect at the outset (this does not mean
that these hypotheses are useless): both are ‘too kinematic’ (while acceleration is a dynamic quantity in
the first place) . A closely related issue is with the rather popular assumption that choosing an
appropriate Tocal’ system of reference one can get rid (mostly) of the sweeping of the small scales by the
large-scale motions. The underlying assumption is that small scales are ‘passive’ and just ‘swept’ by the
large scales without any participation in the process, i.e., ‘slaved’ without any reaction back. This is a
major misconception: there is a rich direct an bidirectional coupling between large and small scales.

" The ‘random sweeping decorrelation hypothesis” means that the microstructure (whatever this means) is siatittily decorrelared from the energy containing eddies. This
Is different from the original assumption made by Tennekes (1975) and before , in which he held that #e mirasracture i statidieally independentof the energy containing
eddies. The large and small scales are statistically not independent, though they are weakly correlated. Indeed, there is a variety of manifestations of direct and
bidirectional impact/coupling of lerge and Small scales. The issue of sweeping is closely related to the comparative aspects of Lagrangian versus Eulerian descriptions — an issue
of utmost importance and difficulty,
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Part II. Relation(s) between
Lulerian and Lagrangian

descriptions -representations of
lurbulent fows.




This is a long-standing and most difficult problem posed by Corrsin in 1957.
e general reason is because the Lagrangian field is an extremely
complicated non-linear functional of the Eulerian field and vice versa (there is
also a problem of mvertibility). The complexity of this relation can be seen in
the example of Lagrangian turbulence (chaotic advection) with 2 prior
prescribed and not random Eulerian velocity field (E-laminar) among others.
In this extreme example (which in reality is a set containing almost all E-

|laminar flows) the Lagrangian statistics has no Eulerian counterpart. In other
words, generally, it may be meaningless to look for such a relation.

" MuInOotTinmoe

.. the pogsession of such relationship would imply that
one had (in some sense) solved the general turbulence
pro6lem. Thaus it scems argualle that such an aim,
although natural, may Ge somewhat iClusory.
Nevertheless attempts to realize this aim can teach us
about the subject... McCOMB, 1990




1. Except of the formal kinematic relation

0 =u[X(a,t); E-L
where u(x,1) is the Eulenan velocity field and 3X(a,t) is the fluid particle
trajectory and a is its label , the common question(s) include in the first place
statistics in the broad sense.

The usual question is whether “simple” relations do exist between the E - statistics
and L - statistics. This is a long-standing and most difficult problem. The general
reason is because the Lagrangian field 3X(a.,t) (and Lagrangian velocities
v[X(a,t); t]) isimpossibly complicated functional of the Euler velocity field
u(x,t). Roughly, there is a general relationship in terms of path (Feynman,
functional) integrals, but this does not help much, if at all. For more on these issues
see Monin and Yaglom (1971, 1, Ch. 9, pp. 568--578), also Bennet (2006, pp. 21-
24). The start was made by Corrsin (1959a,b) and Lumley (1962a,b).

One can even claim that, generally, there cannot be a simple relation and in a sense
even any relation as seen from the following counter-example(s).




Most of laminar flows in the Eulerian setting (E laminar) are Lagrangian chaotic (L-
|||||||c*. ol =

In other words, though the Eulerian velocity field, v (;t) is not chaotic and is regular
and laminar, the Lagrangian velocity field v(a,t) = u[X(a, t); t]) is chaotic
because X (a,t) is chaotic. Thus almost in all E-laminar but L-turbulent flows the

Lagrangian s

d

istics has no Eulerian coun!

erpart.”™ This can be seen as an indicati

100

that the pure Lagrangian dynamical equations (LNSE) are more rich (“more chaotic”)

than their Navier—Stokes counterpart (ENSE) so that one is tem

LNSE is equivalent to ENSE + E-L. Is this trivial? !

nted to conjecture that

2. The differences are exhibited also in structure(s) and flow visualization (what do

we see) — the L-fields may exhibit diff

erent flow pa

erns for the same E-field, and

may have nontrivilal structure(s) in the L-setting with no/or trivial structure for the
E-setting of the same flow as in examples given above and below.

What about “cascade” in Lagrangian chaotic/Eulerian laminar flows™!




Examples showing
how extremely intricate

Is the [ - F relation




Same flow - not the same pattern
Secing is not necessarily Gelieving




SAME FLOW - NOT
{THE SAME PATTERN

s——==z={ The four upper pictures, TOLLMIEN
: d to the visualization of
===l a turbulent water flow in an open 6cm
— 1 wide channel photographed by a moving
S >l camera at different speeds. The mean
e~ velocity of the flow is 16.7cm/s. The two
' lower pictures are from PRANDTL AND
TIETJENS 1934. In the right picture,
#7) the camera moves with the speed equal
&1 to the velocity of water in the centre of
the channel. In the left picture, the speed
of the camera is small and close to the
velocity of the water near the walls




frames (the four different Lagrangian fields) correspond to the same Eulerian flow

What one seces is real
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FicURe 1. Cirenlar-cylinder wake at Ee = 90; smoke wire at (a) z/d = 4, (b) 50, (¢) 100 and
(d) 150.
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Cimbala, J.M., Nagib, H. M and Roshko, A. (1988) Large structures in the far wakes of two-
dimensional bluff bodies, J. Fluid Mech., 190, 265--298.




frames (the four different Lagrangian fields) correspond to the same Eulerian flow

Waat one geeg ig real
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F1GURE 1. Cirenlar-cylinder wake at Re = 90; smoke wire at (a) z/d = 4, (b) 50, (¢) 100 and
(d) 150.
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Cimbala, J.M., Nagib, H. M and Roshko, A. (1988) Large structures in the far wakes of two-
dimensional bluff bodies, J. Fluid Mech., 190, 265--298.




frames (the four different Lagrangian fields) correspond to the same Eulerian flow
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FicURe 1. Cirenlar-cylinder wake at Ee = 90; smoke wire at (a) z/d = 4, (b) 50, (¢) 100 and
(d) 150.
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frames (the four different Lagrangian fields) correspond to the same Eulerian flow
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FicURe 1. Cirenlar-cylinder wake at Ee = 90; smoke wire at (a) z/d = 4, (b) 50, (¢) 100 and
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FRIAN FLOW A1 Re~
(E-LAMINAR)
BUT
CHAOTIC LAGRANGIAN
(L-TURBULENT)

oft

Kinematics versus Dynamics
E-Laminar but L-turbulent
L-turbulent necessarily L-turbulent




\ flow ot RewT it Eulers .
is laminar (E-laminar),
but in Lagrangian setting it is chaotic (L-turbulent)

Most of E-laminar flows are L-turbulent

Thus in almost all E-laminar but L-turbulent flows, the
Lagrangian statistics has no Eulerian counterpart.

Assuming that laminar flows possess no or trivial statistics.




Mixing in PPM - partitioned-pipe mixer at very low Reynolds number.

Reppariaziat = (v:) R/v = 0.3 and Reppares = vrR/v = 1.8; here (v,) — average
— characteristic cross-sectional velocity.

axial velocity and v = (/U1 max + [V1|min)
0 < Reppasiariat <08 and O < Repprr.cs < 0.8 < 8. a) schematic of the PPM, b) is
a close up of the upper part of ¢). From Kusch and QOttino (1992). |




The complexity and problematic aspects of

the relation between the Lagrangian and
Eulerian fields is seen in the example of
-4 # Lagrangian (kinematic) chaos or
-1 Lagrangian turbulence (chaotic advection)
}£ 5.8 with a priori prescribed and not random
b | | Eulerian velocity field (E-laminar). This is
b | why Lagrangian description - being
34 o physically more transparent - is much
"4 more difficult than the Eulerian

&7 54 A (escription. In such E-laminar but L-

MIXING IN PMM, kuss & orTivo (1992) | turbulent flows the Lagrangian statistics

RELEVANT TO MICROFLUDICS with Re ~ 0 (;; | has no Eulerian counterpart, as in the flow
Linked twist maps (LTMs), Bernoulli mixing. ..
shown at the left.
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4+0.1, Reppm:axia =0.5, and
15+0.2, Reppm:axia =0.5, and

g strength 1s increased. The mixing strength parameter and

0, Reppm:axia=0.6, and Reppm.cs=0; (b) ﬁ
.l, RePPM;axiaj'-:O-G, and RePPM:c5=3.5; (d) ﬂ

(a) S
=10+

FiGure 8. Mixing in the PPM as the mixin

Reynolds numbers are

RE'PPM;L‘.\

OTTINO (1992)

138 ) &

RePPM".l.‘.\- =7.5.




two simple corotating

vortices merging into
one vortex with simple

velocity field, but not
that simple field of the
passive scalar(s)

LEWEKE 2000




Tip for mixing
of two
components
of epoxy at
Re~0




E- versus L-structure(s),

1.e. structure(s) in E- versus L-settings




We start by mentioning that passive objects (including fluid particles) have lots of
structure in Gaussian (and other artificial) velocity fields which by definition is

“structureless”, but will possess quite a bit of Lagrangian coherent structures (LCS) in
the spirit of Haller and followers. This is a kind of warning for searching structure(s) in
Lagrangian setting when dealing with the dynamical issues of turbulence, which seems to
be described better in the Eulerian setting: flow visualizations used for studying the
structure of dynamical fields (velocity, vorticity, etc.) of turbulent flows may be quite
misleading, making the question "what do we see?" extremely nontrivial.

Indeed , the meaning of seeing’ turbulent fow Is not so simple as the Lulerian fow structure is different
from the Lagrangian one: walching the evolution of material colored bands’ (s suggested by Reynolds
1884) in a flow may not reveal the nature of the underlying motion, and even in the case of right
qualitative observations the right result may come not necessarily for the right reasons. The famous
verse by Richardson belongs to this kind of observation (which is not necessarily right either)

This Is because the structure of a passive marker (I — fluid particles, etc,) can be (and
usually 1s) very complicated and may have a nontrivial structure and statistics)
whereas the corresponding (underlying) Fulerian velocity field (E) may have rather
simple structure and statistics or may have none.




This 1s a part of a broader question. Namely, what

can be learnt about the properties and especially
dynamics of genine turbulence (NSE, Euler) from
studies of passive objects (particles, scalars,
vectors)? In particular, what can be learnt about the
velocity field and other dynamical variables in real

turbulence from comparison of the behaviour of
passive objects In real and some ‘synthetic’
turbulence?

We are again back with (some aspect of) the L - E
relation




The Newton law in pure Lagrangian setfing

plus incompressibility

0° X, /dzt — [ ], th p] +V[Xn Xn_|_1 [X Xn+1 0X; /at]
D(X,)/D(a;) = [X1 Xo Xs] — 1

It seems to be different from the one in the Euler setting (1.e.
NSE) not only technically, but conceptually as it i1s expected to
produce chaotic behavior in most cases when the flow is
Laminar in Euler setting!

Here (2. ). k) means an even permutation of the indices (1,2.3). The vector
X(a,t) 18 the particle position vector for a particle labeled by a. Usually
a = X(a,ty), 1.e. the imtial positions of fluid particles are used as their

labels. The expression [A B.C| = JABC) is an abbreviation for the

= dla.a2,a3)
Jacobian of the variables A. B, C 1n respect with vanables a;.as az. We

denote (X, Xa, X3/ = J.
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Thus, one 1s tempted to conjecture that the pure
[ . 1V1 I ‘ll.l y (S( [ |

viscous flows)

0°X; /0%t = [X; Xp pl + v[Xy Xoyr, [Xn Xowy, 0X;/01],
D(X,)/D(a;) = [X1 Xo X3] =1

are more rich than their Navier Stokes counterpart

] ] aUg/aLL’g ="
The former being equivalent to the latter plus the

equation

0X(a,t)

L~ UlX(at) (E1)




Though such a conjecture looks plausible, there remain nontrivial issues on the

' relation between Lagrangian versus Eulerian settings in purely dynamical contexts.
One such issue deserves special mentioning. In the Lagrangian setting the fluid particle
acceleration is linear in the fuid particle displacement and the “iertial' effects are
manifested only by the term containing pressure™. That is, one can hardly speak about
things like Reynolds decomposition and Reynolds stresses, turbuent kinetic energy
production in shear flows in pure Lagrangian setting. There is no sweeping of any kind
at the outset as there are no terms like the advective terms (u-V) in pure Eulerian
setting, so one cannot speak about the interaction between advective and diffusive
processes in pure Largangian setting. It seems that nonlinearity in the Lagrangian
representation cannot be interpreted in terms of some cascade (as it cannot be
maintained by pressure gradient alone) and it is far less clear (if at all) how one can
employ decompositions even at the problematic level as done in pure Eulerian setting .

*From which it inmediately follows that the inertial interactions are of nonlocal nature.




CONCLUDING REMARKS




The sweeping decorrelation and/or random Taylor hypotheses
are missing an essential dynamical aspect —
there is a rich direct an bidirectional coupling
between large and small scales —
both hypotheses are ‘too kinematic’.
Thus sweeping cannot be considered as just a kinematic effect:
the dynamics involved is of utmost and primary importance!




It is (more than) plausible that

Pure Lagrangian description (L-NSE) =

Lulerian description (E-NSE) +
the equation

oX(a,t))/ot = u[X(a,t);t]

(E-L)
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settings are different conceptually not just/only
technically. Eulerian setting 1s revealing the pure
dynamical chaotic aspects of genuine turbulence as
contrasted to “mixing” of kinematical with the
dynamical ones In the Lagrangian setting, 1.e. In
genuine turbulence the latter contains both which

seem to be essentially inseparable.
One can hardly expect even the existence of “simple”
relation(s) between L- and E- statistics in turbulence flows



