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Some relevant aspects of the Some relevant aspects of the 
Euler versus Lagrange issues in turbulenceEuler versus Lagrange issues in turbulenceEuler versus Lagrange issues in turbulenceEuler versus Lagrange issues in turbulence

This file is based on three This file is based on three ingerdientsingerdients: : 
* my short intro at the beginning, * my short intro at the beginning,  my short intro at the beginning,  my short intro at the beginning, 
* my presentation at the discussion * my presentation at the discussion 2  2  (the  two pages  of the text  for discussion 2   sent before  the meeting are found on slides  23-29)
* Some additions during this discussion.  * Some additions during this discussion.  
The latter is again mine as nobody volunteered to make any notes. For this reason (not the only one) the discussion is The latter is again mine as nobody volunteered to make any notes. For this reason (not the only one) the discussion is g y y ( y )g y y ( y )
to some extent a discussion of  “one man”. * These are also the reasons I added some specific references and also  to some extent a discussion of  “one man”. * These are also the reasons I added some specific references and also  
below a list of relevant  sections , subsections,  etc.,  from my book, which will be referenced in the text as  below a list of relevant  sections , subsections,  etc.,  from my book, which will be referenced in the text as  T2009:
A. Tsinober 2009 An informal conceptual introduction to turbulence,  xix+464 pp., Springer.   

i f i i i f ii f i i i f iI venture to mention already here the following relevant sections which are referred to in text below: I venture to mention already here the following relevant sections which are referred to in text below: 

3.6  Eulerian versus Lagrangian descriptions , pp 57-61.
4.2  Kinematic/Lagrangian chaos/advection ,  pp. 85-89.
4.3  On the relation between Eulerian and Lagrangian fields ,  pp.  89 -90 .
5.4.4  Is cascade Lagrangian or Eulerian, in some decomposition, phase space or whatever? Cascade of passive objects? pp. 118-119.
6.6   Nonlocality , pp. 163-182.**
6.7.2  The Lagrangian acceleration versus its Eulerian components, pp. 185-189 * ** As part of section  6.7 Acceleration and related matters , pp. 182-193.  
9.3.2.  Differences in structure(s) and 9.3.4  Issues associated with the E-L relations. Analogy  between genuine turbulence and Lagrangian chaos , pp.  302- 306 as part  of 
section 9.3  Genuine turbulence versus passive ”turbulence”,   pp. 298 -307  in the   Chapter 9 ANALOGIES, MISCONCEPTIONS AND ILL-DEFINED CONCEPTS, pp. 295-320.section 9.3  Genuine turbulence versus passive turbulence ,   pp. 298 307  in the   Chapter 9 ANALOGIES, MISCONCEPTIONS AND ILL DEFINED CONCEPTS, pp. 295 320.
13.5  Pure Lagrangian description , pp.  381-382.

*  Of course it is not late to add comments, etc. , which will be added to the WPI site . 
** See also a short subsection 1.3.5  Nonlocality , pp. 28-30; subsection 5.3 Anomalous scaling ,  pp. 102 – 110 with subsections  5.3.1 Inertial range. Is it a well-defined concept?, pp. 103-107  and 
5 3 2 O  th  lti f t l d l   107 110    b ti  10 3 3  N t  f di i ti  i  it ( )i t t?  335 337 d  10 3 4  R l  f i it /di i ti    337 338  I  th  5.3.2 On the multi-fractal models, pp 107-110;   subsections 10.3.3  Nature of dissipation – is it (un)important? pp. 335- 337 and  10.3.4  Roles of viscosity/dissipation , pp. 337-338  In the 
subsection 10.3 Turbulence versus mathematics and vice versa , pp. 329-347
***Note that  a similar  subsection 6.7.1 The relation between the total acceleration and its local and convective components  in the first edition (pp. 131-135)  contains  some  info on correlations  removed 
from the second edition , but all can be found in the paper  by Tsinober, A., Vedula, P., and Yeung, P.K. (2000) Random Taylor hypothesis and the behavior of local and convective accelerations in isotropic 
turbulence, Phys. Fluids, 13, 1974–1984.



TO HEAT UPTO HEAT UP



CorrelationsCorrelations after experiments done is after experiments done is 
bl d  bl d  b db d*  *  O l  di ti  i  iO l  di ti  i  ibloody bloody badbad*. *. Only prediction is scienceOnly prediction is science.

FRED HOYLE 1957, TheThe Black Cloud, Harper, NBlack Cloud, Harper, N--YY..
**These are “These are “postdictionspostdictions””

… there are a variety of models of higher statistics that have meager  or nonexistent deductive support    
f  h  NS  b   b  d    d f   l  M l f lfrom the NS equations but can be made to give good fits to experimental measurements . ..Multifractal
cascade models raise the general issue of distinction between what is descriptive of physical behavior and 
what can be used for analysis of data Multifractal models may or may not express well the cascade what can be used for analysis of data …Multifractal models may or may not express well the cascade 
physics at large but finite Reynolds numbers. . Velocity increments (let alone structure functions and their 
scaling if such exists) are not the only objects of  interest.  On top of this they do not constitute a 

Why on earth should we perform so many elaborate measurements of various   scaling exponents         

g ) y j p y
representation basis for a flow (Goto and  Kraichnan, 2004, Turbulence and Tsallis statistics,  Physica, D193, 231-244.

Why on earth should we perform so many elaborate measurements of various   scaling exponents         
without looking into  the possible concomitant physics and/or  without asking why and how more  
precise knowledge of such exponents, even   assuming their existence, can aid  our understanding of  
turbulent flows?   The   very existence of scaling  exponents (in a statistical sense),  which is taken for  
granted, is a problem by itself  (T2009 pp. 214, 215). 



Discussion Topic 2 
SWEEPING AND RELATED ISSUES INCLUDING  SWEEPING AND RELATED ISSUES INCLUDING  SWEEPING AND RELATED ISSUES INCLUDING  SWEEPING AND RELATED ISSUES INCLUDING  

RANDOM  TAYLOR HYPOTHESISRANDOM  TAYLOR HYPOTHESIS
The issue is only seemingly “narrow”   In reality (as  was seen during the discussion) it is directly related The issue is only seemingly “narrow”   In reality (as  was seen during the discussion) it is directly related The issue is only seemingly narrow .  In reality (as  was seen during the discussion) it is directly related The issue is only seemingly narrow .  In reality (as  was seen during the discussion) it is directly related 
to  the problems like to  the problems like nonlocalitynonlocality and comparativeand comparative discussion of the kinematical  and dynamical aspects discussion of the kinematical  and dynamical aspects 
associated with pure associated with pure EulerianEulerian and pure and pure LagragianLagragian descriptions with the emphasis on conceptual aspects.  descriptions with the emphasis on conceptual aspects.  
Some  specificSome  specific problems requiring problems requiring LagrangianLagrangian treatment along with the treatment along with the EulerianEulerian one are pointed out and  one are pointed out and  
somesome nontrivial questions concerning the nontrivial questions concerning the LagrangianLagrangian setting in turbulence are posed .setting in turbulence are posed .
As mentioned this file is based mainly (but not only) on three As mentioned this file is based mainly (but not only) on three ingerdientsingerdients: : ii)) my short my short As mentioned this file is based mainly (but not only) on three As mentioned this file is based mainly (but not only) on three ingerdientsingerdients: : ii) ) my short my short 
intro at the beginning,  intro at the beginning,  ii) ii) my my presentaitonpresentaiton at the discussion at the discussion 2 2 and  and  iii) iii) the additions the additions 
during this discussion.  The latter is again mine as nobody during this discussion.  The latter is again mine as nobody volonteeredvolonteered to make any to make any during this discussion.  The latter is again mine as nobody during this discussion.  The latter is again mine as nobody volonteeredvolonteered to make any to make any 
notes. For this reason (notes. For this reason (noynoy the only one) the discussion is to some extent a discussion of  the only one) the discussion is to some extent a discussion of  
“ one man”.  These are also the reasons I decided to add  more references including “ one man”.  These are also the reasons I decided to add  more references including 
systematic references on pages, sections, etc. , from my book:systematic references on pages, sections, etc. , from my book:
A. Tsinober 2009 An informal conceptual introduction to turbulence, xix+464 pp., Springer. 

*  Of course it is not late to add comments, etc. , which will be added to the WPI site .



S  li i  d S  li i  d Some generalities and Some generalities and important  important  
relevant relevant questions/issues questions/issues qq



The Lagrangian description of fluid  flows is physically more natural The Lagrangian description of fluid  flows is physically more natural 
than the Eulerian one, since it is related most directly to the motion of 
fluid elements  Nevertheless   mostly technical difficulties (both in fluid elements. Nevertheless,  mostly technical difficulties (both in 
physical and numerical experiments) strongly hindered use of the 
L i  h i   f fl id d i l bl   Th  Lagrangian approach in most of fluid dynamical problems.  The 
traditional  problems for which Lagrangian description is considered  p g g p
especially appropriate are transport and mixing in diverse 
applications  e g  geophysical and environmental  cloud formation  applications, e.g. geophysical and environmental, cloud formation, 
chemical technology, combustion and material processing, 
sedime tatio  bio medical a d rece tl  microfl idics  a d ma  sedimentation, bio-medical and recently microfluidics, and many 
others. In most of the above issues  the concern  is with the kinematic  

  h h   ll d d  “  b laspects, i.e. with what is called today “passive turbulence”.



Another aspect is associated with the dynamics of Another aspect is associated with the dynamics of inviscidinviscid fluids, such as theoretical problems of Euler fluids, such as theoretical problems of Euler Another aspect is associated with the dynamics of Another aspect is associated with the dynamics of inviscidinviscid fluids, such as theoretical problems of Euler fluids, such as theoretical problems of Euler 
equations,  equations,  inviscidinviscid vortex dynamics and vortex methods, stability, dynamics of interfaces and surface vortex dynamics and vortex methods, stability, dynamics of interfaces and surface 
waves, compressible flows.  Though these issues seem to have little to do with genuine turbulence, there waves, compressible flows.  Though these issues seem to have little to do with genuine turbulence, there 
are views/beliefs that such things like possible  singularity formation and collapse in Euler flows  and  that are views/beliefs that such things like possible  singularity formation and collapse in Euler flows  and  that 
the infinite Reynolds number limit of turbulent flow is described by singular solutions of Euler equations . the infinite Reynolds number limit of turbulent flow is described by singular solutions of Euler equations . 
Some people regard these as “very attractive scenarios”  They are definitely very attractive and Some people regard these as “very attractive scenarios”  They are definitely very attractive and Some people regard these as very attractive scenarios . They are definitely very attractive and Some people regard these as very attractive scenarios . They are definitely very attractive and 
mathematically beautiful (since Onsager mathematically beautiful (since Onsager 19491949),  but it is more than not clear whether they have anything  ),  but it is more than not clear whether they have anything  
to do with real turbulence at whatever large Reynolds numbersto do with real turbulence at whatever large Reynolds numbers.  One cannot take seriously claims like .  One cannot take seriously claims like to do w t  ea  tu bu e ce at w ateve  a ge ey o ds u be sto do w t  ea  tu bu e ce at w ateve  a ge ey o ds u be s.  O e ca ot ta e se ous y c a s e .  O e ca ot ta e se ous y c a s e 
““The existence of such near singularities for turbulent velocity fields at high Reynolds number has been The existence of such near singularities for turbulent velocity fields at high Reynolds number has been 
confirmed by data from experiments  and simulations”  confirmed by data from experiments  and simulations”  or or “Observations from experiments and “Observations from experiments and 
simulations suggest that material objects simulations suggest that material objects advectedadvected by such a rough velocity become fractal...” by such a rough velocity become fractal...” , sincesince all all 
thethe experimental and numerical evidence is obtained at moderate Reexperimental and numerical evidence is obtained at moderate Re at which no singularities, fractal at which no singularities, fractal 
structure  etc  are  expected and observed (if such exist at all)  This evidence cannot be used as structure  etc  are  expected and observed (if such exist at all)  This evidence cannot be used as structure, etc. are  expected and observed (if such exist at all). This evidence cannot be used as structure, etc. are  expected and observed (if such exist at all). This evidence cannot be used as 
supporting any  models at infinite Resupporting any  models at infinite Re, which in principle cannot be confirmed or disproved by , which in principle cannot be confirmed or disproved by 
experimental or numerical evidence. experimental or numerical evidence. pp



In other words the main concern is in the evolution of passive objects (fluid particles,
passive scalars such as dispersing contaminants, chemical species, temperature, moisture; passive vectors p p g , p , p , ; p
such as material lines, (weak) magnetic field in an electrically conducting fluid; passive surfaces such as 
material surfaces, and in some cases reacting surfaces and turbulent flames; material volumes) in 
random fluid flows and more recently in any Lagrangian chaotic flows which among 
multitude of others* include most of laminar flows in Eulerian setting* 
An essential point is that the evolution of passive objects obeys linear equations in which the velocity field An essential point is that the evolution of passive objects obeys linear equations in which the velocity field 
does not `know' anything about the presence of these objects and therefore the velocity field is considered 
as given a priori be it a real fluid flow field or some artificial one. There is no involving phenomenon as as given a priori be it a real fluid flow field or some artificial one. There is no involving phenomenon as 
pressure**. This does not mean that the problems of the evolution of passive objects are simple. The main 
complication and simultaneously rich variety of phenomena comes from the fact that the velocity field 
enters as a coefficient in front of the spatial derivatives, i.e. it is due its multiplicative character, so that 
statistical problems become in a sense nonlinear.

         ________________________________________________         
* As mentioned  the above qualification  includes  all artificial velocity fields both random and/or  multi-scale or not .  The field of particle trajectories is (can be seen) as a passive 
object: it is a Lagrangian signature of the underlying velocity field of any nature be it genuinely turbulent, or Lagrangian chaotic such as E-Laminar, synthetic random or not, restricted 
Euler,  kinematic simulations of Lagrangian chaotic evolution, turbulent-like multiscale fields, including real E-laminar flows at Re≈0 from linear Stokes equations with random forcing, 
flows in porous media,  micro-devices, to name some. 

**Hence `shocks' in the form of ramp-cliff structures just like in the Burgers equation.



There is little (if any) treatment of dynamical aspects of turbulent flows (e.g. those There is little (if any) treatment of dynamical aspects of turbulent flows (e.g. those 
corresponding to those described by NSE in corresponding to those described by NSE in EulerianEulerian setting)setting) in in LagrangianLagrangian setting setting (one of (one of 
our main concerns here).  One of the reasons is the view our main concerns here).  One of the reasons is the view that  that  A principal objective A principal objective 
of any theory of fluid motion is the prediction of the spread of of any theory of fluid motion is the prediction of the spread of 
matter or "tracer" within the fluidmatter or "tracer" within the fluid.  .  BENNETBENNET 20062006
But the main reasons seem to take their origin in the difficulties to handle the But the main reasons seem to take their origin in the difficulties to handle the LagrangianLagrangian
equations (with nonequations (with non--zero viscosity) and related issues.zero viscosity) and related issues.
In contrast , on the technical side,  since in a pure In contrast , on the technical side,  since in a pure LagrangianLagrangian setting the equations are setting the equations are 

blbl **((  f )  d   b   (    f )  d   b   (   d lld ll !) !) LL f   f   intractableintractable**((so far) in order to obtain true (not  so far) in order to obtain true (not  modellingmodelling!) !) LagrangianLagrangian information, one information, one 
typically solves the problem in  typically solves the problem in  EulerianEulerian setting (i.e., using NSE) and using this information setting (i.e., using NSE) and using this information 
t th  ith  th  ti  l ti    th  t   f d i tit th  ith  th  ti  l ti    th  t   f d i titogether with  the equation relating   the two ways of descriptiontogether with  the equation relating   the two ways of description

∂X∂X(a,a,t)/∂t )/∂t = u[X= u[X(a,a,t); t]] {EE--LL}
f ff fone can obtain the one can obtain the LagrangianLagrangian evolution of any fluid  particle, evolution of any fluid  particle, i.e. the Lagrangian velocity velocity 

fieldfield, , vv((aa,,t) = ∂) = ∂XX((aa,,t)/∂t)/∂t, is related to the , is related to the EulerianEulerian velocity fieldvelocity field, , u(x,t), as 
( t) [XX( t) t]vv(a,t) ≡ uu [XX(a,t);t].

*but allow  posing of nontrivial and important questions.*but allow  posing of nontrivial and important questions.



The   {The   {EE--LL}  relation  above is of utmost importance  }  relation  above is of utmost importance  
              blbl  f  l  l  E l  f ld    f  l  l  E l  f ld   since  it is  not  since  it is  not  integrableintegrable even for simplest laminar Euler fields  even for simplest laminar Euler fields  

with the exception of very simple flows such as unidirectional ones.  with the exception of very simple flows such as unidirectional ones.  

Thus  for a wide class of (almost all) laminar  flows  in the Thus  for a wide class of (almost all) laminar  flows  in the EuelerianEuelerian setting  (i.e. with the setting  (i.e. with the EulerianEulerian
velocity field, velocity field, uu((xx;t;t) not chaotic, regular and laminar)  the ) not chaotic, regular and laminar)  the LagrangianLagrangian velocity field velocity field vv((aa,t,t) ) ≡≡ uu[[XX((aa,t,t);t] );t] 
(as any other property of (as any other property of fluid particlefluid particle) ) is chaotic because is chaotic because XX((aa,t,t) is chaotic! * ) is chaotic! * This fact is of utmost This fact is of utmost 
importance issues like the relation (s) between  the importance issues like the relation (s) between  the EulerianEulerian and and LagrangianLagrangian characteristics of the same characteristics of the same 
flow field (see below)flow field (see below)flow field (see below)flow field (see below)
It has to be emphasized that this chaotic behavior is of purely kinematic nature resulting solely  from the It has to be emphasized that this chaotic behavior is of purely kinematic nature resulting solely  from the 
equation {Eequation {E--L} (and various equations for passive objects L} (and various equations for passive objects -- reminding again reminding again -- linear in Euler setting)  and  linear in Euler setting)  and  q {q { } ( q p j} ( q p j g gg g g)g)
has nothing to do with dynamics, i.e. genuine (as NSE) turbulence.has nothing to do with dynamics, i.e. genuine (as NSE) turbulence. This concerns  also all problems with This concerns  also all problems with 
prescribed velocity fields in prescribed velocity fields in EulerianEulerian setting setting –– synthetic, Gaussian , etc.  Similarly, all randomly forced synthetic, Gaussian , etc.  Similarly, all randomly forced 
f (f ( ))flows with low Reynolds number (including flows with low Reynolds number (including multicalemulticale ones) belong to this category.ones) belong to this category.

**The field of particle trajectories is a passive object: it is a The field of particle trajectories is a passive object: it is a LagrangianLagrangian signature of the underlying velocity field of any nature be it genuinely turbulent  or signature of the underlying velocity field of any nature be it genuinely turbulent  or The field of particle trajectories is a passive object: it is a The field of particle trajectories is a passive object: it is a LagrangianLagrangian signature of the underlying velocity field of any nature be it genuinely turbulent, or signature of the underlying velocity field of any nature be it genuinely turbulent, or 
LagrangianLagrangian chaotic such as Echaotic such as E--Laminar, synthetic random or not, kinematic simulations of Laminar, synthetic random or not, kinematic simulations of LagrangianLagrangian chaotic evolution, turbulentchaotic evolution, turbulent--like like multiscalemultiscale fields, fields, 
including real Eincluding real E--laminar flows at Re≈laminar flows at Re≈0 0 from linear Stokes equations with random forcing, flows in porous media,from linear Stokes equations with random forcing, flows in porous media, microdevicesmicrodevices, to name some, to name some..



The important points as concerns turbulence are as follows The important points as concerns turbulence are as follows 
••Whereas Whereas the Ethe E turbulence is a turbulence is a dynamical  dynamical  phenomenon phenomenon this is not necessarily the case this is not necessarily the case ••Whereas Whereas the Ethe E--turbulence is a turbulence is a dynamical  dynamical  phenomenon phenomenon this is not necessarily the case this is not necessarily the case 
with the  Lwith the  L--turbulence which may be a turbulence which may be a purely kinematicpurely kinematic one .  In other words the flow can one .  In other words the flow can 
be  purely   Lbe  purely   L turbulent (i e  Eturbulent (i e  E laminar) as laminar) as metionedmetioned above  and  illustrated in the   above  and  illustrated in the   be  purely   Lbe  purely   L--turbulent (i.e. Eturbulent (i.e. E--laminar) as laminar) as metionedmetioned above  and  illustrated in the   above  and  illustrated in the   
examples  below.  examples  below.  However, if the flow is EHowever, if the flow is E--turbulent (i.e. Re >> turbulent (i.e. Re >> 11) it is L) it is L--turbulent as turbulent as 
well   well   well.  well.  
Two important consequences:Two important consequences:
* studying * studying LagrangianLagrangian statistics only may not provide adequate information of the Lstatistics only may not provide adequate information of the L studying  studying LagrangianLagrangian statistics only may not provide adequate information of the Lstatistics only may not provide adequate information of the L--
statistics of genuine turbulence as not necessarily containing its pure dynamical statistics of genuine turbulence as not necessarily containing its pure dynamical 
““stochasticitystochasticity””stochasticitystochasticity
* the structure and evolution of passive objects  (including fluid particles ) in genuine * the structure and evolution of passive objects  (including fluid particles ) in genuine 
turbulent flows arises from two (essentially and unfortunately  inseparable) contributions: turbulent flows arises from two (essentially and unfortunately  inseparable) contributions: turbulent flows arises from two (essentially and unfortunately  inseparable) contributions: turbulent flows arises from two (essentially and unfortunately  inseparable) contributions: 
one due to the one due to the LagrangianLagrangian chaos  and the other due to the random nature of the (chaos  and the other due to the random nature of the (EulerianEulerian) ) 
velocity field itselfvelocity field itself     velocity field itselfvelocity field itself.  .  
All the above brings in the questions listed below. All the above brings in the questions listed below. 



** Is it true that dynamical issues Is it true that dynamical issues per seper seyy pp
can be treated satisfactory in can be treated satisfactory in EulerianEulerian
setting only? setting only? setting only? setting only? 

** Is there any need to use for this      Is there any need to use for this      
purpose the purpose the LagrangianLagrangian setting too? setting too? purpose the purpose the LagrangianLagrangian setting too? setting too? 

** Are there problems which require such        Are there problems which require such        
an approach.an approach.
* In what sense are the E* In what sense are the E-- and Land L--settings  settings  gg

equvivalentequvivalent (if they are? And what is   (if they are? And what is   
(the meaning of ) the  relation between      (the meaning of ) the  relation between      (the meaning of ) the  relation between      (the meaning of ) the  relation between      
the twothe two? ? 

More specific questions are the theme of present Discussion More specific questions are the theme of present Discussion More specific questions are the theme of present Discussion More specific questions are the theme of present Discussion 
((22) , see below) , see below



A bit of historyA bit of historyA bit of historyA bit of history
Is Is LagrangianLagrangian setting Lagrange’s or Euler’s?setting Lagrange’s or Euler’s?



One owes to Euler the first general formulas for fluid motion ... presented in the 
simple and luminous notation of partial differences... By this discovery, all fluid 
mechanics was reduced to a single point analysis and if the equations involved mechanics was reduced to a single point analysis, and if the equations involved 
were integrable, one could determine completely, in all cases the motion of a fluid 
moved by any forces… LAGRANGE Mécanique analitique, Paris, 1788, Sec X. , 271 

Of course, fluid mechanics can, in principle, be worked entirely in the Lagrangian**
frame...even neglecting viscous forces... yield awkward moment equations. CORRSIN
1962.  1962.  

The use of the viscous Lagrangian equations in turbulence theory is still a matter 
for the future. MONIN AND YAGLOM 1971

Though the Lagrangian description of the flow . . . has many attractions
. . . it is generally unwieldy to work with. Even the kinematic task of determining 
closed-form solutions for the particle paths    from an initial position    is closed-form solutions for the particle paths . . . from an initial position . . . is 
generally intractable.   SOWARD AND ROBERTS  2008

It is clear that some aspects of the fluid motion are easier to understand in the 
Eulerian framework while others are easier to describe in the Lagrangian
framework.  FRIEDLANDER & LIPTON-LIFSCHITZ 2003 

What one sees is real  The problem is interpretationWhat one sees is real. The problem is interpretation

**In fact what is called “Lagrangian desription is also due to Euler, see Lamb, 1932. A detailed account on the ‘misnomer’ by which the‘Lagrangian’ equations 
are ascribed to Lagrange is found in Truesdell, 1954.  Kinematics of vorticity, Indiana University Press,    Bloomington. 



H.LAMB H.LAMB 19321932, , HydrodynamicsHydrodynamics,, Cambridge Univ. Press, pp Cambridge Univ. Press, pp 22--33

P. FRANK 1935, Die differential- und integral Gleichungen der Mechanik und Physik,  2nd ed., Part 2 Vieweg; L.D.LANDAU AND P. FRANK 1935, Die differential und integral Gleichungen der Mechanik und Physik,  2 ed., Part 2 Vieweg; L.D.LANDAU AND 

L.D.LANDAU AND E.M.LIFSHITS 1959 Fluid Mechanics, Pergamon and many others.

A detailed account on the ‘misnomer’  by which the ‘A detailed account on the ‘misnomer’  by which the ‘LagrangianLagrangian’ equations are ’ equations are 
ascribed to Lagrange is  found in  ascribed to Lagrange is  found in  C  C  TRUESDELLTRUESDELL 19541954   The Kinematics of The Kinematics of ascribed to Lagrange is  found in  ascribed to Lagrange is  found in  C. C. TRUESDELLTRUESDELL 19541954, , The Kinematics of The Kinematics of 
VorticityVorticity, Indiana University Press, pp. , Indiana University Press, pp. 3030--32  32  and references thereinand references therein (see three next slides)



See pp. 30-32

In part shownIn part shown 
at the next 
two slidestwo slides







CORRSIN, S. 1962 Theories 
of turbulent dispersion, in: Favre, 
A., editor, Mécanique de la 
turbulence, Proceedings of the 
Colloques Internationaux du 
CNRS, Marseille, 28 Aug.–2 
Sept. 1961, Publ. CNRS No 108, 
Paris, pp. 27–52.
MONIN, A.S. AND 
YAGLOM, A.M. 1971 
Statistical fluid mechanics, vol. 1,  

Gerber, R., (1949) Sur la réduction à un principe
i ti l d  é ti d  t d’ fl idfl id

Ch.9 , MIT Press;       2nd  
Russian edition  1992 

variationnel des équations du mouvement d un fluidefluide
visqueuxvisqueux incompressibleincompressible, Ann. Inst. Fourier, 1, 157–162.

Gidrometeoizdat, St. Petersburg, 



.

We mention already here the issue of special interest (for the We mention already here the issue of special interest (for the y p (y p (
forthcoming discussion) on forthcoming discussion) on L - E  relation and in what sense 
are the E- and L-settings equvivalent (if they are!)?g q ( y )
Indeed, the ‘more chaotic’ nature of the Lagrangian setting    
(" the relative orderliness of " the relative orderliness of EulerianEulerian representation over representation over ( pp
LagrangianLagrangian“)“) , is traced , is traced backback to early to early LagrangianLagrangian simulations simulations 
by Amsden and Harlow 1964, see also Harlow, 2004. y , ,
Therefore it is a natural conjecture that the pure Therefore it is a natural conjecture that the pure LagrangianLagrangian
dynamical equations (so far intractable for viscous flows) are dynamical equations (so far intractable for viscous flows) are y q ( )y q ( )
more rich than their (E)more rich than their (E)NavierNavier––Stokes counterpart. The Stokes counterpart. The 
former being equivalent to the latter plus the equation relating former being equivalent to the latter plus the equation relating g q p q gg q p q g
the the EulerianEulerian and and LagrangianLagrangian descriptions. descriptions. 
AAmsden A A and Harlow F H (1964) Slip instability Phys Fluids 7 327–334AAmsden, A.A. and Harlow, F.H. (1964) Slip instability, Phys. Fluids, 7, 327 334
Harlow, F.H. (2004) Fluid dynamics in Group T-3 Los Alamos National Laboratory (LA-UR-03-3852), J. 
Comp. Phys., 195, 414–433.



P t I f th  di i  2   Part I of the discussion 2. . 
Sweeping Sweeping decorrelationdecorrelationp gp g

hypothesis (SDH) and/or hypothesis (SDH) and/or hypothesis (SDH) and/or hypothesis (SDH) and/or 
Random Taylor hypothesis  Random Taylor hypothesis  Random Taylor hypothesis  Random Taylor hypothesis  
(RTH)  d l d i(RTH)  d l d i(RTH)  and related issues(RTH)  and related issues



The basis of SDH/RTH is comprised by the hypothesis which essentially originates from K41, in words 
of Kraichnan 1959 : Kolmogorov's basic assumption (Kolmogorov 1941) is essentially that the internal 
dynamics of the sufficiently fine-scale structure (in x-space) at high Reynolds numbers should be 
independent of the large-scale motion. The latter should, in effect, merely convect, bodily *, regions 
small compared to the macro scale  ** Conseq entl  it is ass med that (Tennekes 1975) Ta lor's  small compared to the macro scale. ** Consequently, it is assumed that (Tennekes 1975) Taylor's  
“frozen-turbulence”  approximation should be valid for the analysis of the consequences of large-scale 
advection of the turbulent microstructure and that the microstructure is statistically independent of the advection of the turbulent microstructure and that the microstructure is statistically independent of the 
energy containing eddies.  The latter seems too strong as compared to the statement that the 
microstructure (whatever this means) is statistically decorrelated from the energy containing eddies.
The important point is that all the above remain hypotheses and never have been proven. There is some 
recent experimental evidence that these hypotheses are conceptually incorrect.  Results  like  k-5/3 spectra 
are insufficient  for validation these as any theories and may well be (and some really are) the  RRWR   are insufficient  for validation these as any theories and may well be (and some really are) the  RRWR.  

* Note that this is what is called sweeping which is claimed to have purely kinematic nature  (which is erroneous) – this is why 
Lagrangian in the first place  and even claims  that it preserves the shapes of the advected small scale eddies and thus has no effect on the Lagrangian in the first place  and even claims  that it preserves the shapes of the advected small scale eddies and thus has no effect on the 
turbulence energy spectrum in the Eulerian frame. 
**Similar statements were made by Kraichnan 1964: An underlying assumption of Kolmogorov theory is that very large spatial scales of 
motion convect very small scales without directly causing significant internal distortion of the small scales  The assumption usually is motion convect very small scales without directly causing significant internal distortion of the small scales. The assumption usually is 
considered to be consistent with, and to imply, statistical independence of small and large scales;  Tennekes 1975  and many others; for a 
good list of references see Gkioulekas 2007. 



In view of the above there are a number of questions which  the “simpleton Wilson” would like to ask and q p
discuss.  
1. Is the sweeping really kinematic? Is it true that small scales are statistically independent of the small scales? Or even more 

rebelliously – do small scales have  any impact on the large scales except of overall dissipation? Do large-scale motions merely rebelliously – do small scales have  any impact on the large scales except of overall dissipation? Do large-scale motions merely 
convect, bodily *, regions small compared to the macro scale, i.e. it preserve the shapes of the advected small scale eddies .   A short 
answer is that the claims above are erroneous due to direct and  bidirectional couling on smal l and large scales. This is essentially  
nonlocality . Some examples are given below , for more see  (T2009 ,  pp 163-182.*) and references therein nonlocality . Some examples are given below , for more see  (T2009 ,  pp 163 182. ) and references therein 

2. Theoreticians have reasons to “remove” in some sense the sweeping  (hence the crucial function of the hypotheses) . Do they really 
remove the sweeping  or they just think that they do so?  After all the physical system  does not care about how WE do represent it.,  
ALL the  scales including the large ones  are there whatever the representation.   g g p

The question is in what sense the equations  with removed sweeping are  equivalent to the original ones and/or how the small scales  
do know about the removed large scales (or they shouldn’t and/or are not supposed to) or are the small scales  in the equations with 
removed large scales equivalent to the small scales  in the original equations? Or is SDH/RTH the only “answer” to the latter
question?

3. Related to 2. on the need of removing the sweeping : why nature does not need this removal in order to produce the right resullt? 
4. The SDH/RTH - which is kind of decomposition - ignores too much from the interaction (in the first place dynamical) between the 

large  and small scales, i.e. it is  `too kinematic'.  It is really justified except being convenient for theoreticians?

* See also a short subsection 1.3.5  Nonlocality , pp. 28-30; subsection 5.3 Anomalous scaling ,  pp. 102 – 110 with subsections  5.3.1 Inertial range. Is it a well-defined concept?, pp. 103-107  and 
5.3.2 On the multi-fractal models, pp 107-110;   subsections 10.3.3  Nature of dissipation – is it (un)important? pp. 335- 337 and  10.3.4  Roles of viscosity/dissipation , pp. 337-338  In the 
subsection 10.3 Turbulence versus mathematics and vice versa , pp. 329-347 



Part  II of the discussion  2Part  II of the discussion  2..
R l ti ( ) b t  R l ti ( ) b t  E l iE l iRelation(s) between Relation(s) between EulerianEulerian
and and LagrangianLagrangian descriptions descriptions --

representations of turbulent flows representations of turbulent flows representations of turbulent flows representations of turbulent flows 



1. Except of the formal kinematic  relation 
∂X( t))/∂t  [X( t)  t]       (E L) ∂X(a,t))/∂t = u[X(a,t); t]       (E-L) 

where u(x,t) is the Eulerian velocity field  and X(a,t) is the fluid particle 
t j t  d  i  it  l b l   th   ti ( ) i l d  i  th  fi t l  trajectory and a is its label ,  the common question(s) include in the first place 
statistics in the broad sense. 
Th  l ti  i  h th   “ i l ” l ti  d  i t b t  th  E t ti ti  The usual question is whether  “simple” relations do exist between the E – statistics 
and L – statistics.  This is a long-standing and most difficult problem. The general 

 i  b  th  L i  fi ld X( t) ( d L i  l iti   reason is because the Lagrangian field X(a,t) (and Lagrangian velocities  
v[X(a, t); t]) is impossibly complicated functional of the Euler velocity field 

( t) R hl  th  i   l l ti hi  i  t  f th (F  u(x,t). Roughly, there is a general relationship in terms of path (Feynman, 
functional) integrals, but this does not help much, if at all. For more on these issues 

 M i  d Y gl  (1971  1  Ch  9   568 578)  l  B t (2006   21see Monin and Yaglom (1971, 1, Ch. 9, pp. 568--578), also Bennet (2006, pp. 21-
24). The start was made by Corrsin (1959a,b) and Lumley (1962a,b)



One can even claim that, generally there cannot be a simple relation and in a sense even 
any relation as seen from the following counter example  any relation as seen from the following counter-example. 
Most of laminar flows in the Eulerian setting (E-laminar) are Lagrangian chaotic  (L-
turbulent) due to non-integrability of the  relation ∂X(a t))/∂t = u[X(a t); t]turbulent) due to non-integrability of the  relation ∂X(a,t))/∂t = u[X(a,t); t]
In other words,  though the Eulerian velocity field, u(x;t) is not chaotic and is regular 
and laminar  the Lagrangian velocity field  v(a t) = u[X(a  t); t]) is chaotic and laminar, the Lagrangian velocity field  v(a,t) = u[X(a, t); t]) is chaotic 
because X(a,t) is chaotic.  Thus almost in all E-laminar but L-turbulent flows the 
Lagrangian statistics has no Eulerian counterpart   This can be seen as an indication that Lagrangian statistics has no Eulerian counterpart.  This can be seen as an indication that 
the pure Lagrangian dynamical equations  (LNSE) are more rich (“more chaotic”)   than 
their Navier--Stokes counterpart  (ENSE)  so  that  one is tempted to conjecture that their Navier--Stokes counterpart  (ENSE)  so  that  one is tempted to conjecture that 
LNSE is equivalent to  ENSE + E-L.  This is not trivial. 

2.  The differences are exhibited also in structure(s) and flow visualization  (what do we 
see?) – the L-fields may exhibit different flow patterns for the same E-field  see?) – the L-fields may exhibit different flow patterns for the same E-field. 
I will bring some results for the item I. and examples as concerns the item II.



References  to both parts, see also references below – those mentioned in a short form are found in full in T2009
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1.1. Is the sweeping really kinematic? Is it true that small scales are Is the sweeping really kinematic? Is it true that small scales are 
statistically independent of the small scales? Or even more statistically independent of the small scales? Or even more 
rebelliously rebelliously do small scales have  any impact on the large do small scales have  any impact on the large rebelliously rebelliously –– do small scales have  any impact on the large do small scales have  any impact on the large 
scales except of overall dissipation? scales except of overall dissipation? Do large-scale motions merely 
convect, bodily *, regions small compared to the macro scale, i.e. it preserve the 
shapes of the advected small scale eddies 



Statistical dependence of small on large scales Statistical dependence of small on large scales ( frequently  assumed not to exist)( frequently  assumed not to exist)
E t hE t h 22  t t l t i   t t l t i  22 d d l ti  d d l ti  22 diti d  it d  f diti d  it d  f EnstrophyEnstrophy22, total strain , total strain ss22 and squared acceleration aand squared acceleration a22 conditioned on magnitude of conditioned on magnitude of 
the velocity fluctuation vectorthe velocity fluctuation vector, , Field experiment,  Sils-Maria, Switzerland, 2004,        
R  6800  (G l k  l  2007  J  Fl d M h  589   1 3  57 123)Re= 6800  (Gulitskii et al. 2007, J. Fluid Mech., 589, parts 1-3, 57-123)

Enstrophy Enstrophy 22

total strain total strain ss22
squared accelerationsquared acceleration aa22



Conventional Conventional KolmogorovKolmogorov
Equivalent Hosokawa’s Equivalent Hosokawa’s 

Conventional Conventional KolmogorovKolmogorov
44//5 5 law law 19411941bb

relation relation 20072007

((uu ))33 44//55rr uu22
++uu−− = = rr//3030

NOTE HERE THE CORRELATION BETWEEN NOTE HERE THE CORRELATION BETWEEN 
THE LARGE AND SMALL SCALE QUANTITIES ! THE LARGE AND SMALL SCALE QUANTITIES ! 

22 ( + ) +( + ) + ( )( ) 22 ( + )( + ) ( ) ≡( ) ≡ 

((uu11))33 = = --44//55rr  ++ 

22uu++ = u= u11(x + r) + u(x + r) + u11(x), (x), 22uu-- = u= u11(x + r) − u(x + r) − u11(x) ≡ (x) ≡ uu11
uu11(x) is the longitudinal  velocity component(x) is the longitudinal  velocity component

M. Kholmyansky, and A. Tsinober 2008 Kolmogorov 4/5 law, non-locality and sweeping decorrelation hypothesis,  Physics of Fluids, 20, Physics of Fluids , 20,  041704/1-4



The role of kinematic relations in the issue of nonlocality goes far beyond  their use in the nonlocal interpretation of the 
Kolmogorov 4/5 law.  There exist    many kinematic relations of several types* 

e.g. <(<(ΔΔuu))nn>= >= ––22<<uu11((ΔΔuu))nn––11> =  > =  22<<uu22((ΔΔuu))nn––11>; >; nn≥≥22

n n = = 22
((ΔΔuu))22 = = ––22 uu11ΔΔuu(( )) 11

=   =   22 uu22ΔΔuu

**Kholmyansky M., ,  Sabelnikov V.  and Tsinober A  2010 )  Local versus Nonlocal Processes in Turbulent Flows, Kinematic Coupling and General  Stochastic Processes,
in: Turbulence and Interactions  Proceedings the TI 2009 Conference ,Michel Deville ,Thien-Hiep Le,  Pierre Sagaut (Editors) pp 216-221, Springer.



The  inertial range (IR) The  inertial range (IR) 
is not a well defined conceptis not a well defined concept

The conventionally defined  inertial range is contaminated  by both larger y g y g
scales and  strong  dissipative events from  the conventionally defined   

dissipative  range   The emphasis below is on the latterdissipative  range . . The emphasis below is on the latter



X  - the site of the field 
experiment in Switzerland 
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probe

o e

probe

A  S M   Kfar Glikson measurement 
station, Israel, the probe on 
the mast (a), 1999

Airborne 
experiment, Germany, the 
probe in the flight (B) , 2000

Sils-Maria experiment, 
Switzerland, the probe on 
the lifting machine (c), 2004

Israel Switzerland Airborn





THE PROBETHE PROBE

Manganin is used as a 
material for the sensor 

3 3 mmmm

material for the sensor 
prongs instead of 
tungsten because the  

hot  wireshot  wires

tungsten because the  
temperature coefficient 
of the electrical of the electrical 
resistance of manganin 
is 400 times smaller than 

cold wirescold wires
is 400 times smaller than 
that of tungsten.The tip of the probeThe tip of the probe



HISTOGRAMSHISTOGRAMS of the increments of the longitudinal velocity of the increments of the longitudinal velocity 
component for the full data and the same data in which the component for the full data and the same data in which the 
t  di i ti  t  ith diff t th h ld   t  di i ti  t  ith diff t th h ld   strong dissipative events with different thresholds were strong dissipative events with different thresholds were 

removedremoved. . a)a) r/r/ = = 100100 corresponds to the lower edge of corresponds to the lower edge of 
the inertial range,  the inertial range,  b) b) r/r/ = = 400400 , , 1000  1000  deep  in the deep  in the 
inertial range .  inertial range .  Note that the PDFs with removed  strong Note that the PDFs with removed  strong 
dissipative events  dissipative events  (dark blue ones) (dark blue ones) are  are  not close to the close to the 
Gaussian  curve as claimed  in some  later publications. Gaussian  curve as claimed  in some  later publications. 

Gaussian

pp
An event ΔΔuu = u(= u(x+rx+r))--u(x)u(x) is qualified as  a strong 
dissipative if at least at one of its ends (x, (x, x+rx+r)) the 
instantaneous dissipation εε qq εε for qq >> 11instantaneous dissipation εε qq εε for qq > > 11

Gaussian GaussianGaussian



SCALING EXPONENTS, SCALING EXPONENTS, pp,, of of 
structure functions for the structure functions for the 
l i di l l i    f  l i di l l i    f  

pp ΔΔuu = u(= u(x+rx+r))--u(x)u(x)
longitudinal velocity component  for longitudinal velocity component  for 
the full data and the same data in the full data and the same data in 
which the strong dissipative events which the strong dissipative events 

h d ff  h h ld   h d ff  h h ld   

pp (( )) ( )( )

with different thresholds were with different thresholds were 
removedremoved

An event ΔΔuu = u(= u(x+rx+r))--u(x)u(x)
is qualified as  a strong dissipative if q g p
at least at one of its ends (x, (x, x+rx+r))
the instantaneous dissipation 

εε qq εε for qq > > 11
The ‘anomalous scaling’  is not and  attribute  of the conventionally  defined inertial range  (CDIR) and is The ‘anomalous scaling’  is not and  attribute  of the conventionally  defined inertial range  (CDIR) and is The anomalous scaling   is not and  attribute  of the conventionally  defined inertial range  (CDIR) and is The anomalous scaling   is not and  attribute  of the conventionally  defined inertial range  (CDIR) and is 
not a manifestation of  IR intermittency.  It is  due to the strong dissipative events  not a manifestation of  IR intermittency.  It is  due to the strong dissipative events  within !within ! the  CDIR.  the  CDIR.  
No need  for MF “formalism” ?!?No need  for MF “formalism” ?!?
For more see TFor more see T2009 2009 ,  pp. ,  pp. 102102--110 110 and references therein, also and references therein, also BorisenkovBorisenkov, Y., M. , Y., M. KholmyanskyKholmyansky, M., , M., KrylovKrylov, S., , S., LiberzonLiberzon, A. and , A. and 
TsinoberTsinober, A.  (, A.  (20112011) Super) Super--miniature multiminiature multi--hothot--film probe for subfilm probe for sub--KolmogorovKolmogorov resolution in highresolution in high--Re Re 
turbulence,  turbulence,  Journal of Physics: Conference Series,Journal of Physics: Conference Series, 318318, , 072004072004..



The The 44//5 5 law  is not a pure inertial relation at large Relaw  is not a pure inertial relation at large Re
SS33

(r)(r) = = −−((44//55))r + r + 66ννddSS22
(r)(r)//ddrr,,

A crucial point here is that the negligible (and neglected at large Re) viscous term 
66 ddSS ( )/( )/dd i  h  K l 4/5 l   l  R  d   i  ALL h  66ννddSS22

(r)/(r)/ddrr,, in the Kolmogorov 4/5 law at large Re does not contain ALL the 
viscous contributions.  Namely, strong strong dissipative events present in the structure dissipative events present in the structure 
ff f               //      /    functionfunction SS33

(r)(r) itself in the IR do contribute to the in the IR do contribute to the 44//5 5 lawlaw and keep the 4/5 valid: : 
without the dissipative events just mentioned the 4/5 law does not hold!  Removal of 
the strong dissipative events (STE) strong dissipative events (STE) leads to ii)) a decrease of −−((44//55))rr below 
unity, which means that the STE make a positive contribution to the energy  transfer  
and ii) an increase of the scaling exponent above unity , see next slide

In this sense the 4/5  law is not a purely inertial law..p y
Eq (34.20)p.139 Landau and Lifshits, 1987 

_____________________________________________________________________
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Top: Contributions of the strong dissipative events Top: Contributions of the strong dissipative events 
to the third-order structure function as a function 
of the threshold qs for various separations r.                
I  th  i t  li  t  f th  thi d d  In the insert: scaling exponents of the third-order 
structure function as a function of the threshold.

T  i ht  Z  i   l t f th  4/5 l  ( h  t Top right: Zoom in a plot of the 4/5 law (shown at 
bottom)  with removed strong dissipative events.  





The The subgridsubgrid scale energy fluxscale energy flux ΠΠ
ΠΠ(x;r)=(x;r)=--ττikik [s[sikik]; ]; ττikik=[=[uuiiuukk]]--[[uuii][][uukk]]
[...][...]- a Gaussian one-dimensional filter of width rr[ ][ ]
The results shown here are by necessity of qualitative nature as we used oneone--dimensionaldimensional filter 
which was a standard Gaussian filter of width rr.

  PDFPDFΠΠ PDFPDF



The invariants of the subgrid stress The invariants of the subgrid stress ττikik=[u=[uiiuukk]]--
[[ ][][ ]][u[uii][u][ukk]]



to to enstrophyenstrophy production production ωiωjsij

Contributions of strong dissipative eventsContributions of strong dissipative events
to to enstrophyenstrophy production production ωiωjsij

The common view is that the origin of enstrophy production  and  
similar processes is purely inertial. However, it appears  that it contains a      

b t ti l t ib ti  f  th  di i ti  t        substantial contribution from the dissipative events.       

ddωω22//ddtt = = ωωiiωωjjssijij + + νωνωii∆ω∆ωii..

εε  qq εε

BorisenkovBorisenkov, Y., M. , Y., M. KholmyanskyKholmyansky, M., , M., KrylovKrylov, S., , S., LiberzonLiberzon, A. and , A. and TsinoberTsinober, A.  (, A.  (20112011) Super) Super--miniature multiminiature multi--hothot--film probe for subfilm probe for sub--KolmogorovKolmogorov resolution in highresolution in high--Re turbulence,  Re turbulence,  Journal of Physics: Conference Series,Journal of Physics: Conference Series, 318318, , 072004072004..



All the above shows  that  the conventionally defined inertial  range All the above shows  that  the conventionally defined inertial  range 
is not well defined .  On the simplest level this means that it is contaminated 
b  l  d    ( l  h l  l   h )  h  by strongly dissipative events  (along with large scale events either) so the 
one cannot employ  in dimensional anlysis the standart variables from  the  
K41. 

A BET A BET 
It is likely, therefore, that  the same is true of  Lagrangian setting, so that 

i  (f  th  t ti ti ) ill lt i th  li    f  t removing (from the statistics) will result in the scaling  ετ so far not 
observed  for the second order  Lagrangian structure.   This is the bet 
I proposed during the discussion at May 10.



1 Is the sweeping really kinematic? Is it true that small scales are statistically 1. Is the sweeping really kinematic? Is it true that small scales are statistically 
independent of the small scales? Or even more rebelliously – do small scales 

h    i t  th  l  l  t f ll di i ti ? Do largeDo largehave  any impact on the large scales except of overall dissipation? Do largeDo large--
scale motions merely scale motions merely convectconvect,  bodily *, *, regions small regions small 
compared to the macro scale, i.e. it preserves the shapes of the compared to the macro scale, i.e. it preserves the shapes of the 
advectedadvected small scale eddies ? small scale eddies ? advectedadvected small scale eddies ? small scale eddies ? 
In view of the above  the answer is negative , see also the two In view of the above  the answer is negative , see also the two 
next slidesnext slides..
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Evolution of a tetrahedron with edge of  ≈ Evolution of a tetrahedron with edge of  ≈ 4η at  at  t = 0 (courtesy  Beat Luethi)
Li, Y., Perlman, E., Wan, M., Yang, Y., Burns, R., Meneveau, C., Burns, R., Chen, S., Szalay, A..& Eyink, G. 2008 

A public turbulence  database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. J. Turbulence,  9 (31) 1–29.  
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Evolution of a tetrahedron with edge of  Evolution of a tetrahedron with edge of  4η at at t = 0 (courtesy  Beat Luethi)
Li, Y., Perlman, E., Wan, M., Yang, Y., Burns, R., Meneveau, C., Burns, R., Chen, S., Szalay, A..& Eyink, G. 2008 

A public turbulence  database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. J. Turbulence,  9 (31) 1–29.  
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In view of the above there are a number of questions which  the “simpleton Wilson” would like to ask 
and discuss.  
1. Is the sweeping really kinematic? Is it true that small scales are statistically independent of the small scales?  
Or even more rebelliously – do small scales have  any impact on the large scales except of overall dissipation? 
Do large-scale motions merely convect  bodily *  regions small compared to the macro scale  i e  it preserve the Do large-scale motions merely convect, bodily , regions small compared to the macro scale, i.e. it preserve the 
shapes of the advected small scale eddies 
2. Theoreticians have reasons to “remove” in some sense the sweeping  (hence the crucial function of the hypotheses) . 
The question is in what sense the equations  with removed sweeping are  equivalent to the original ones and/or how the small The question is in what sense the equations  with removed sweeping are  equivalent to the original ones and/or how the small 
scales   do know about the removed large scales (or they shouldn’t and/or are not supposed to) or are the small scales  in 
the equations with removed large scales equivalent to the small scales  in the original equations? Or is SDH/RTH the 

l  “ ”   h  l  i ?  only “answer”  to the latter question?  
3. Related to 2. on the need of removing the sweeping : why nature does not need this removal in order to produce the right   
result? 

44.  The SDH/RTH .  The SDH/RTH -- which is kind of decomposition which is kind of decomposition -- ignores too much fromignores too much from
the interaction (in the first place dynamical) between the large  and small the interaction (in the first place dynamical) between the large  and small the interaction (in the first place dynamical) between the large  and small the interaction (in the first place dynamical) between the large  and small 

scales,  scales,  i.e. it is  `too kinematic'.  i.e. it is  `too kinematic'.  It is really justified except being convenient It is really justified except being convenient 
for theoreticians?for theoreticians?for theoreticians?for theoreticians?



More onMore onMore onMore on
In what senseIn what sense are SDH/RTH valid?are SDH/RTH valid?In what senseIn what sense are SDH/RTH valid?are SDH/RTH valid?
Or why Or why -- being being approxmatelyapproxmately correct correct --pp ypp y
they are  they are  erroneous conceptuallyerroneous conceptually



It  appears that for many quantities (scalars, vectors, tensors) the Lagrangian derivative    
DQ/Dt = ∂Q/∂t + u ∂Q/∂x is much smaller  in some sense than its EulerianDQ/Dt = ∂Q/∂t + uk∂Q/∂xk is much smaller  in some sense than its Eulerian
components,  ∂Q/∂t and uk∂Q/∂xk **. This is true of fluid particle accelerations, This is true of fluid particle accelerations, e.g.,  
a2/a2  and a2/a2   1 withwith a = a + a and  and  a = ∂u/∂ta2/a2

l and a2/a2
c  1    withwith a = al + ac and  and  al = ∂u/∂t,

ac= (u  )u, and and comprizescomprizes the basis of the Random Taylor hypothesis in which the basis of the Random Taylor hypothesis in which 
TennekesTennekes ((19751975) ) put just put just a = 0 This assumption is local point wise in space/time and 

MORE GENERALLY

TennekesTennekes ((19751975) ) put just put just a = 0. This assumption is local point-wise in space/time and 
is not a statistical one. The second assumption made by Tennnekes is of statistical nature, 
namely  that the microstructure is statistically independent of the energy containing  MORE GENERALLYnamely, that the microstructure is statistically independent of the energy containing  

eddies.  The equality a = 0 should  and cannot not be understood literally ( just as the 
microstructure is not statistically independent of and even not decorrelated from the energy containing eddies)  It is   microstructure is not statistically independent of and even not decorrelated from the energy containing eddies). It is   
obvious  that the  acceleration of fluid particles cannot be vanishing,  since othrewise one  
one may arrive to the conclusion that both  equations ∂u/∂t + (u )u = 0 and  one may arrive to the conclusion that both  equations ∂u/∂t + (u  )u = 0 and  
− ρ-1p +ν2u = 0 are valid ,  which is trivially incorrect !

*Galanti, B., Gulitsky, G., Kholmyansky, M., Tsinober, A. & Yorish, S. 2003 Velocity derivatives in turbulent flow in an atmospheric boundary layer without Taylor hypothesis. In : Turbulence and Shear Flow 
Phenomena (ed. N. Kasagi, J. Eaton,  R. Friedrich, J. Humphrey,  M.Leschziner & T. Miyauchi), , vol. II, pp. 745–750.



The smallness of  a , e.g.  e.g.  a2/a2
l and a2/a2

c  1 is possible if there is mutual 
(statistical) cancellation between  the local acceleration, al,  and convective acceleration, ac ;        ( ) , l, , c ;
al = ∂u/∂t, ac= (u  )u. Since these quantities are  vectors, the degree of this mutual 
cancellation should be  studied both in terms not only of  their magnitude but also  of the geometry of 
vector alignments.  Indeed there is a  strong anti-alignment between the two .  

Field experiment Re= 6800

MORE GENERALLY
PTV Re= 80

MORE GENERALLY

PDF  f th  i  f th  l  b t  d Th  i t  h  thi  d d  ith th  ti l i  l  d i  th  PDFs of the cosine of the angle between al and ac. The insets show this dependence with the vertical in log and in the 
proximity of cos(al, ac)  − 1. This alignment was observed first in DNS (Tsinober et al 2001) - left, and in 
laboratory experiments (Lüthi et al., 2005) and in the atmospheric surface layer Gulitski et al. (2007) – right. 



An important observation is very  high  values of  
correlation between 
al = ∂u/∂t and ac= (u  )u
In other words the approximation a ≈ 0  is 
very good and becomes better  with increasing 
Reynolds numbers.  This is true also of the 

lidit  f th  R d  T l  H th i   (RTH) 

MORE GENERALLYCorrelation coefficients between  al and  ac, and al and 

validity of the Random Taylor Hypothesis  (RTH) 
or sweeping decorrelation hypothesis (SDH).  
The important  point  is  though both areMORE GENERALLYacs, DNS (Tsinober 2001,  Tsinober et al 2001) The latter 

is the solenoidal part of ac . Simlar results for al and ac 
obtained in laboratory experiments (Lüthi et al., 2005) and 

The important  point  is  though both are
approximately kinematic, this  - as  mentioned  
above - does not mean  that the    non-kinematic  

in the atmospheric surface layer Gulitski et al. (2007) “small difference” justifies the validity of the 
equations  ∂u/∂t + (u  )u = 0 and

1 2 0 It i  thi  “ ll  ρ-1p +ν2u = 0. It is this “small  
non-kinematic difference”  which is 

tl   ibl  f  ll th  d id i

Thus sweeping cannot be considered as just Thus sweeping cannot be considered as just 
a kinematic effect. The dynamics involved  a kinematic effect. The dynamics involved  

mostly  responsible for all the dynamicsdynamics
in the Eulerian representation.  

is of utmost importance!is of utmost importance!



A  critical  remark on the nature of A  critical  remark on the nature of KolmogorovKolmogorov--KraichnanKraichnan--TennekesTennekes ‘decomposition’:‘decomposition’:
The The swepingsweping decorrelationdecorrelation and/or random Taylor hypothesis       and/or random Taylor hypothesis       The The swepingsweping decorrelationdecorrelation and/or random Taylor hypothesis       and/or random Taylor hypothesis       
There are two main ingredients in the (Eulerian) decorrelation:  i) – the sweeping of microstucture by 
the large-scale motions (and associated kinematic nonlocality), ii) – and the local straining (which is 
roughly pure Lagrangian).  As seen from above this kind of ‘‘decomposition’ is insufficient as it is missing 
an essential dynamical aspect – the interaction between the two**.   The  random Taylor hypothesis (and, 
of course, the conventional Taylor hypothesis) lack/discard this aspect at the outset (this does not mean 
that these hypotheses are useless):  both are ‘too kinematicboth are ‘too kinematic’ (while acceleration is a dynamic quantity in 
th  fi t l )   A l l  l t d i  i  ith th  th  l  ti  th t h i   the first place) .  A closely related issue is with the rather popular assumption that choosing an 
appropriate ‘local’ system of reference one can get rid (mostly) of the sweeping of the small scales by the 
large-scale motions  The underlying assumption is that small scales are ‘passive’ and just ‘swept’ by the large-scale motions. The underlying assumption is that small scales are passive  and just swept  by the 
large scales without any participation in the process, i.e., ‘slaved’ without any reaction back. This is a 
major misconception: there is a rich direct an bidirectional coupling between large and small  scales. j p p g g
* The ‘random sweeping decorrelation hypothesis’ means that the microstructure (whatever this means) is statistically decorrelated from the energy containing eddies. This 
is different from the original assumption made by Tennekes (1975) and before , in which he held that the microstructure is statistically independent of the energy containing 
eddies The large and small scales are statistically not independent  though they are weakly correlated  Indeed  there is a variety of manifestations of direct and eddies. The large and small scales are statistically not independent, though they are weakly correlated. Indeed, there is a variety of manifestations of direct and 
bidirectional impact/coupling of large and small scales. The issue of sweeping is closely related to the comparative aspects of Lagrangian versus Eulerian descriptions – an issue 
of utmost importance and difficulty.   



Examples  of alignments  betweenExamples  of alignments  between
∂Q/∂ d d ∂Q/∂ f   ∂Q/∂t and and uk∂Q/∂xk for  
vorticityvorticity, temperature gradient and , temperature gradient and Vorticity ω

magnetic field  magnetic field  from DNS of NSEfrom DNS of NSE

Galanti, B., Gulitsky, G., Kholmyansky, M., Tsinober, A. & Yorish, S. 2003 Velocity derivatives 
in turbulent flow in an atmospheric boundary layer without Taylor hypothesis. In : Turbulence 
and Shear Flow Phenomena (ed. N. Kasagi, J. Eaton,  R. Friedrich, J. Humphrey,  M.Leschziner 
& T. Miyauchi), , vol. II, pp. 745–750.

Magnetic field B Temperature gradient G



Part  IIPart  II   Relation(s) between Relation(s) between Part  IIPart  II . . Relation(s) between Relation(s) between 
E le iaE le ia a d a d Lag a giaLag a giaEulerianEulerian and and LagrangianLagrangian

d  d   f  f descriptions descriptions --representations of representations of 
turbulent flows. turbulent flows. turbulent flows. turbulent flows. 



ThisThis isis aa longlong--standingstanding andand mostmost difficultdifficult problemproblem posedposed byby CorrsinCorrsin inin 19571957..
TheThe generalgeneral reasonreason isis becausebecause thethe LagrangianLagrangian fieldfield isis anan extremelyextremelyTheThe generalgeneral reasonreason isis becausebecause thethe LagrangianLagrangian fieldfield isis anan extremelyextremely
complicatedcomplicated nonnon--linearlinear functionalfunctional ofof thethe EulerianEulerian fieldfield andand vicevice versaversa (there(there isis
alsoalso aa problemproblem ofof invertibilityinvertibility)) TheThe complexitycomplexity ofof thisthis relationrelation cancan bebe seenseen ininalsoalso aa problemproblem ofof invertibilityinvertibility)).. TheThe complexitycomplexity ofof thisthis relationrelation cancan bebe seenseen inin
thethe exampleexample ofof LagrangianLagrangian turbulenceturbulence (chaotic(chaotic advection)advection) withwith aa prioripriori
prescribedprescribed andand notnot randomrandom EulerianEulerian velocityvelocity fieldfield (E(E--laminar)laminar) amongamong othersothersprescribedprescribed andand notnot randomrandom EulerianEulerian velocityvelocity fieldfield (E(E laminar)laminar) amongamong othersothers..
InIn thisthis extremeextreme exampleexample (which(which inin realityreality isis aa setset containingcontaining almostalmost allall EE--
laminarlaminar flows)flows) thethe LagrangianLagrangian statisticsstatistics hashas nono EulerianEulerian counterpartcounterpart InIn otherotherlaminarlaminar flows)flows) thethe LagrangianLagrangian statisticsstatistics hashas nono EulerianEulerian counterpartcounterpart.. InIn otherother
words,words, generally,generally, itit maymay bebe meaninglessmeaningless toto looklook forfor suchsuch aa relationrelation..
InIn aa sensesense itit belongsbelongs toto thethe categorycategory ofof THETHE questionsquestions::InIn aa sensesense itit belongsbelongs toto thethe categorycategory ofof THETHE questionsquestions::
... the possession of such relationship would imply that
one had (in some sense) solved the general turbulenceone had (in some sense) solved the general turbulence
problem. Thus it seems arguable that such an aim,
although natural, may be somewhat illusory.
Nevertheless attempts to realize this aim can teach us
about the subject… MCCOMB, 1990



1. Except of the formal kinematic  relation 
∂X( t))/∂t  [X( t)  t]      {E L} ∂X(a,t))/∂t = u[X(a,t); t]      {E-L} 

where u(x,t) is the Eulerian velocity field  and  X(a,t) is the fluid particle 
t j t  d  i  it  l b l   th   ti ( ) i l d  i  th  fi t l  trajectory and a is its label ,  the common question(s) include in the first place 
statistics in the broad sense. 
Th  l ti  i  h th   “ i l ” l ti  d  i t b t  th  E t ti ti  The usual question is whether  “simple” relations do exist between the E - statistics 
and L - statistics.  This is a long-standing and most difficult problem. The general 

 i  b  th  L i  fi ld X( t) ( d L i  l iti   reason is because the Lagrangian field X(a,t) (and Lagrangian velocities  
v[X(a, t); t]) is impossibly complicated  functional of the Euler velocity field 

( t) R hl  th  i   l l ti hi  i  t  f th (F  u(x,t). Roughly, there is a general relationship in terms of path (Feynman, 
functional) integrals, but this does not help much, if at all. For more on these issues 

 M i  d Y gl  (1971  1  Ch  9   568 578)  l  B t (2006   21see Monin and Yaglom (1971, 1, Ch. 9, pp. 568--578), also Bennet (2006, pp. 21-
24).  The start was made by Corrsin (1959a,b) and Lumley (1962a,b). 
O    l i  th t  g ll  th  t b   i l  l ti  d i    One can even claim that, generally, there cannot be a simple relation and in a sense 
even any relation as seen from the following counter-example(s). 



Most of laminar flows in the Eulerian setting (E-laminar) are Lagrangian chaotic  (L-
turbulent) due to non-integrability of the  relation ∂X(a,t))/∂t = u[X(a,t); t]turbulent) due to non integrability of the  relation ∂X(a,t))/∂t  u[X(a,t); t]
In other words,  though the Eulerian velocity field, u(x;t) is not chaotic and is regular 
and laminar, the Lagrangian velocity field  v(a,t) = u[X(a, t); t]) is chaotic and laminar, the Lagrangian velocity field  v(a,t)  u[X(a, t); t]) is chaotic 
because X(a,t) is chaotic.  Thus almost in all E-laminar but L-turbulent flows the 
Lagrangian statistics has no Eulerian counterpart.* This can be seen as an indication Lagrangian statistics has no Eulerian counterpart.  This can be seen as an indication 
that the pure Lagrangian dynamical equations  (LNSE) are more rich (“more chaotic”)   
than their Navier--Stokes counterpart  (ENSE)  so  that  one is tempted to conjecture that than their Navier Stokes counterpart  (ENSE)  so  that  one is tempted to conjecture that 
LNSE  is equivalent to  ENSE + E-L.  Is this trivial? !

2.  The differences are exhibited also in structure(s) and flow visualization  (what do 
we see) – the L-fields may exhibit different flow patterns for the same E-field ,   and  ) y p ,
may have nontrivilal structure(s) in the L-setting with no/or trivial structure for the 
E-setting of the same flow as in examples given above and below.g p g

What about “cascade”  in What about “cascade”  in LagrangianLagrangian chaotic/chaotic/EulerianEulerian laminar laminar flows?!flows?!



Examples showing Examples showing Examples showing Examples showing 
how extremely intricatehow extremely intricatehow extremely intricatehow extremely intricate
is the L is the L E  relationE  relationis the L is the L -- E  relationE  relation



Same flow Same flow -- not the same patternnot the same patternSame flow Same flow not the same patternnot the same pattern
Seeing is not necessarily believingSeeing is not necessarily believing



SAME FLOW SAME FLOW -- NOT NOT 
THE SAME PATTERNTHE SAME PATTERN

p g

THE SAME PATTERNTHE SAME PATTERN

The four upper pictures  TOLLMIEN The four upper pictures, TOLLMIEN 

1931, correspond to the visualization of 
a turbulent water flow in an open 6cm p
wide channel photographed by a moving 
camera at different speeds. The mean 

f f / Tvelocity of the flow is 16.7cm/s. The two 
lower pictures are from PRANDTL AND 

 I  th  i ht i t  TIETJENS 1934. In the right picture, 
the camera moves with the speed equal 
to the velocity of water in the centre of to the velocity of water in the centre of 
the channel. In the left picture, the speed 
of the camera is small and close to the of the camera is small and close to the 
velocity of the water near the walls



All frames (the four different Lagrangian fields) correspond to the samesame Eulerian flow
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Cimbala, J.M., Nagib, H. M and Roshko, A. (Cimbala, J.M., Nagib, H. M and Roshko, A. (19881988) Large structures in the far wakes of two) Large structures in the far wakes of two--
dimensional bluff bodies, J. Fluid Mech., dimensional bluff bodies, J. Fluid Mech., 190190, , 265265----298298..
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LAMINAR LAMINAR EULERIANEULERIAN FLOW AT FLOW AT ReRe1 1 LAMINAR LAMINAR EULERIANEULERIAN FLOW AT FLOW AT ReRe 1 1 
((EE--LAMINAR)LAMINAR)

BUTBUTBUTBUT
CHAOTIC CHAOTIC LAGRANGIANLAGRANGIAN

((LL--TURBULENTTURBULENT))

OR OR 

Ki ti   D iKi ti   D iKinematics versus DynamicsKinematics versus Dynamics
EE L iL i bb t t LL t b l t t b l t EE--LaminarLaminar bubut t LL--turbulent. turbulent. 

EE turbulent  turbulent  necessarily necessarily LL turbulent turbulent EE--turbulent  turbulent  necessarily necessarily LL--turbulent turbulent 



A flow at A flow at ReRe 1 1 in Eulerian setting in Eulerian setting A flow at A flow at ReRe1 1 in Eulerian setting in Eulerian setting 
is laminar (is laminar (EE--laminarlaminar), ), is laminar (is laminar (EE laminarlaminar), ), 

but but in Lagrangian setting it is chaotic in Lagrangian setting it is chaotic ((LL--turbulentturbulent))

Most of EMost of E--laminar flows are Llaminar flows are L--turbulentturbulentMost of EMost of E laminar flows are Llaminar flows are L turbulentturbulent

Thus in almost all EThus in almost all E laminar but Llaminar but L turbulent flows   the turbulent flows   the Thus in almost all EThus in almost all E--laminar but Llaminar but L--turbulent flows,  the turbulent flows,  the 
Lagrangian  statistics  has no Eulerian counterpart. Lagrangian  statistics  has no Eulerian counterpart. pp

Assuming that laminar flows possess no or trivial statistics.  



cc

bb

aaNote the value of Note the value of 
th  R ld  th  R ld  the Reynolds the Reynolds 
number! ≈ number! ≈ 11



The complexity and problematic aspects of The complexity and problematic aspects of p y p pp y p p
the relation between the the relation between the LagrangianLagrangian and and 
EulerianEulerian fields is seen in the example of fields is seen in the example of pp
LagrangianLagrangian (kinematic) chaos or (kinematic) chaos or 
LagrangianLagrangian turbulence (chaotic advection) turbulence (chaotic advection) g gg g ( )( )
with a priori prescribed and not random with a priori prescribed and not random 
EulerianEulerian velocity field (Evelocity field (E--laminar). This is laminar). This is y (y ( ))
why why LagrangianLagrangian description description -- being being 
physically more transparent physically more transparent -- is much is much p y y pp y y p
more difficult than the more difficult than the EulerianEulerian
description. In such Edescription. In such E--laminar but Llaminar but L--pp
turbulent flows the turbulent flows the LagrangianLagrangian statistics statistics 
has no has no EulerianEulerian counterpart, as in the flow counterpart, as in the flow 

MIXING IN PMM, KUSH & OTTINO (1992)

RELEVANT TO MICROFLUIDICS RELEVANT TO MICROFLUIDICS with Re with Re ~ ~ 0 0 (!(!);   );   
L k d   (LTM )    B ll  

p ,p ,
shown at the leftshown at the left. . 

Linked twist maps (LTMs),   Bernoulli mixing…



KUSH & OTTINO (1992)



Dye visualization of Dye visualization of 
two simple corotating two simple corotating 
vortices merging into 
one vortex with  simple
elocit  field   b t otvelocity field,  but not

that simple field of the p
passive scalar(s)
LEWEKE 2000



Tip for mixing Tip for mixing 
of  two of  two 

t    components   
f  tof epoxy at
Re0



EE-- versus Lversus L--structure(s), structure(s), ( ),( ),
i.e. structure(s) in Ei.e. structure(s) in E-- versus Lversus L--settingssettings



We start by mentioning that passive objects (including fluid particles) have lots of We start by mentioning that passive objects (including fluid particles) have lots of 
structure in Gaussian (and other artificial) velocity fields which by definition is structure in Gaussian (and other artificial) velocity fields which by definition is ( ) y y( ) y y
““structurelessstructureless”,  ”,  but  will possess quite a bit of but  will possess quite a bit of LagrangianLagrangian coherent structures (LCS) in coherent structures (LCS) in 
the spirit of Haller and followers. the spirit of Haller and followers. This is a kind of warning for searching structure(s) in This is a kind of warning for searching structure(s) in 
LagrangianLagrangian setting when dealing with the dynamical issues of turbulence, which seems to setting when dealing with the dynamical issues of turbulence, which seems to 
be described better in the be described better in the EulerianEulerian setting: setting: flow visualizations used for studying the flow visualizations used for studying the 
structure of dynamical fields (velocity, structure of dynamical fields (velocity, vorticityvorticity, etc.) of turbulent flows may be quite , etc.) of turbulent flows may be quite 
misleadingmisleading, , making the question "what do we see?" extremely nontrivial. making the question "what do we see?" extremely nontrivial. 
Indeed , the meaning of ‘seeing’ turbulent flow is not so simple as the Indeed , the meaning of ‘seeing’ turbulent flow is not so simple as the EulerianEulerian flow structure is different flow structure is different 
from the from the LagrangianLagrangian one: watching the evolution of material ‘colored bands’ (as suggested by Reynolds one: watching the evolution of material ‘colored bands’ (as suggested by Reynolds 
18841884) in a flow may not reveal the nature of the underlying motion  and even in the case of right ) in a flow may not reveal the nature of the underlying motion  and even in the case of right 18841884) in a flow may not reveal the nature of the underlying motion, and even in the case of right ) in a flow may not reveal the nature of the underlying motion, and even in the case of right 
qualitative observations the right result may come not necessarily for the right reasons. The famous qualitative observations the right result may come not necessarily for the right reasons. The famous 
verse by Richardson belongs to this kind of observation (which is not necessarily right either).verse by Richardson belongs to this kind of observation (which is not necessarily right either).

This is because the structure of a passive marker (L This is because the structure of a passive marker (L –– fluid particles, etc.) can be (and fluid particles, etc.) can be (and 
usually is) very complicated  and may have a nontrivial structure and statistics!, usually is) very complicated  and may have a nontrivial structure and statistics!, 
whereas the corresponding (underlying) whereas the corresponding (underlying) EulerianEulerian velocity field (E) may have rather velocity field (E) may have rather 
simple structure and statistics or may have none. simple structure and statistics or may have none. 



This is a part of a broader question. Namely, what This is a part of a broader question. Namely, what 
 b  l  b  h  i  d i ll   b  l  b  h  i  d i ll  can be learnt about the properties and especially can be learnt about the properties and especially 

dynamics of dynamics of geninegenine turbulence (NSE, Euler) from turbulence (NSE, Euler) from dynamics of dynamics of geninegenine turbulence (NSE, Euler) from turbulence (NSE, Euler) from 
studies of passive objects (particles, scalars, studies of passive objects (particles, scalars, 

)? I  i l  h   b  l  b  h  )? I  i l  h   b  l  b  h  vectors)? In particular, what can be learnt about the vectors)? In particular, what can be learnt about the 
velocity field and other dynamical variables in real velocity field and other dynamical variables in real velocity field and other dynamical variables in real velocity field and other dynamical variables in real 
turbulence from comparison of the turbulence from comparison of the behaviourbehaviour of of 
passive objects in real and some ‘synthetic’ passive objects in real and some ‘synthetic’ 
turbulence?turbulence?turbulence?turbulence?
We are again back with (some aspect of) the L We are again back with (some aspect of) the L -- E E g ( p )g ( p )
relationrelation



The Newton law in pure Lagrangian settingThe Newton law in pure Lagrangian settingp g g gp g g g
plus incompressibilityplus incompressibility

I    b  I    b  diffdiff f  h   i  h  E l  i  (i  f  h   i  h  E l  i  (i  It seems to be It seems to be differentdifferent from the one in the Euler setting (i.e. from the one in the Euler setting (i.e. 
NSE) NSE) not only technicallynot only technically, but , but conceptuallyconceptually as it is expected to as it is expected to 
produce chaotic behavior in most cases when the flow is produce chaotic behavior in most cases when the flow is 
Laminar in Euler setting!Laminar in Euler setting!Laminar in Euler setting!Laminar in Euler setting!



Thus, one is tempted to conjecture that the pure Thus, one is tempted to conjecture that the pure 
LagrangianLagrangian dynamicaldynamical equations (so far intractable for equations (so far intractable for LagrangianLagrangian dynamicaldynamical equations (so far intractable for equations (so far intractable for 
viscousviscous flows)flows)

are more rich than their are more rich than their NavierNavier Stokes counterpartStokes counterpart

The former being equivalent to the latter plus the The former being equivalent to the latter plus the 
equation equation equation equation 

(E(E L)L)(E(E--L)L)



Though such a conjecture looks plausible, there remain nontrivial issues on the Though such a conjecture looks plausible, there remain nontrivial issues on the 
l il i b  b  L iL i   E l iE l i i  i  l  d i l  i  i  l  d i l  relationrelation between between LagrangianLagrangian versus versus EulerianEulerian settings in purely dynamical contexts. settings in purely dynamical contexts. 

One such issue deserves special mentioning. In the One such issue deserves special mentioning. In the LagrangianLagrangian setting the fluid particle setting the fluid particle 
acceleration is linear in the acceleration is linear in the fuidfuid particle displacement and the `inertial' effects are particle displacement and the `inertial' effects are 
manifested only by the term containing pressure*. That is, one can hardly speak about manifested only by the term containing pressure*. That is, one can hardly speak about 
things like Reynolds decomposition and Reynolds stresses, things like Reynolds decomposition and Reynolds stresses, turbuentturbuent kinetic energy kinetic energy 
production in shear flows in pure production in shear flows in pure LagrangianLagrangian setting. There is no sweeping of any kind setting. There is no sweeping of any kind 
at the outset as there are no terms like the at the outset as there are no terms like the advectiveadvective terms terms (u(u )) in pure in pure EulerianEulerian
setting, so one cannot speak about the interaction between setting, so one cannot speak about the interaction between advectiveadvective and diffusive and diffusive 
processes in pure processes in pure LargangianLargangian setting. It seems that nonlinearity in the setting. It seems that nonlinearity in the LagrangianLagrangian
representation cannot be interpreted in terms of some cascade (as it cannot be representation cannot be interpreted in terms of some cascade (as it cannot be 

    )    f    ( f  )        )    f    ( f  )    maintained by pressure gradient alone) and it is far less clear (if at all) how one can maintained by pressure gradient alone) and it is far less clear (if at all) how one can 
employ decompositions even at the problematic level as done in pure employ decompositions even at the problematic level as done in pure EulerianEulerian settingsetting .

*From which it immediately follows  that the inertial  interactions are of  nonlocal nature.



CONCLUDING REMARKSCONCLUDING REMARKS



The sweeping The sweeping decorrelationdecorrelation and/or random Taylor hypothesesand/or random Taylor hypothesesThe sweeping The sweeping decorrelationdecorrelation and/or random Taylor hypothesesand/or random Taylor hypotheses
are missing an essential dynamical aspect –g y p
there is a rich direct an bidirectional coupling

b t  l  d ll  l  between large and small  scales –
both hypotheses are ‘too kinematicare ‘too kinematic’. yp

Thus sweeping cannot be considered as just a kinematic effect:Thus sweeping cannot be considered as just a kinematic effect:
th  d i  i l d  i  f t t  d i  i t !th  d i  i l d  i  f t t  d i  i t !the dynamics involved  is of utmost  and primary importance!the dynamics involved  is of utmost  and primary importance!



It is (more than) plausible that
Pure Lagrangian description (L-NSE) ≡g g p ( )
Eulerian description (E-NSE) +  
the equation

(E(E--L)L)∂X(a,t))/∂t = u[X(a,t);t]( )) [ ( ) ]



In other words the In other words the EulerianEulerian and and LagrangianLagrangianIn other words, the In other words, the EulerianEulerian and and LagrangianLagrangian
settings are different settings are different conceptuallyconceptually not just/only not just/only 
technically.  technically.  EulerianEulerian setting is revealing the pure setting is revealing the pure 
dynamical chaotic aspects of genuine turbulence as dynamical chaotic aspects of genuine turbulence as dynamical chaotic aspects of genuine turbulence as dynamical chaotic aspects of genuine turbulence as 
contrasted to “mixing” of kinematical with the contrasted to “mixing” of kinematical with the contrasted to mixing  of kinematical with the contrasted to mixing  of kinematical with the 
dynamical ones in the dynamical ones in the LagrangianLagrangian setting, i.e. in setting, i.e. in 

i  b l  h  l  i  b h hi h i  b l  h  l  i  b h hi h genuine turbulence the latter contains both which genuine turbulence the latter contains both which 
seem to be essentially inseparableseem to be essentially inseparable  seem to be essentially inseparableseem to be essentially inseparable. . 
One can hardly expect even the existence of  “simple”  One can hardly expect even the existence of  “simple”  
relation(s) between Lrelation(s) between L-- and Eand E-- statistics in turbulence flowsstatistics in turbulence flows


