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Hyperbolic LCS: transport and mixing
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ABSTRACT

We develop a mathematical theory that clarifies the relationship between observable Lagrangian
Coherent Structures (LCSs) and invariants of the Cauchy-Green strain tensor field. Motivated by physical
observations of trajectory patterns, we define hyperbolic LCSs as material surfaces (i.e., codimension-
one invariant manifolds in the extended phase space) that extremize an appropriate finite-time normal
repulsion or attraction measure over all nearby material surfaces. We also define weak LCSs (WLCSs)
as stationary solutions of the above variational problem. Solving these variational problems, we obtain
computable sufficient and necessary criteria for WLCSs and LCSs that link them rigorously to the
Cauchy-Green strain tensor field. We also prove a condition for the robustness of an LCS under
perturbations such as numerical errors or data imperfection. On several examples, we show how
these results resolve earlier inconsistencies in the theory of LCS. Finally, we introduce the notion of a
Constrained LCS (CLCS) that extremizes normal repulsion or attraction under constraints. This construct
allows for the extraction of a unique observed LCS from linear systems, and for the identification of the
most influential weak unstable manifold of an unstable node.

© 2010 Elsevier B.V. All rights reserved.




Elliptic LCS: transport barrier



The Antarctic ‘‘ozone hole”

Total Ozone Column
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Cold air confined within the stratospheric polar vortex and sunlight
facilitate the chemical reactions leading to natural ozone depletion;
best conditions achieved in the Austral springtime; stimulated by CFC
production, which was limited by the Montreal Protocol.
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Mount Pinatubo’s sulfur dioxide and dust aerosol plume

Approximately 45 days after the eruption on 12 June 1991, the aerosol
plume completely circled the Earth around the equator forming a band

20 to 50° of latitude wide.



Jupiter’s belts and zones
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Belts (bright bands) and zones (dark bands) differ in chemical compo-
sition.




Sea surface temperature fronts in the ocean
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Courtesy C. Buckingham.



Zonal jets as transport barriers



Seasonal variation of stratospheric zonally-averaged zonal
wind and potential vorticity from CMAM model
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The Potential Vorticity (PV) 1s a measure of swirl (including the

planetary rotation) which 1s transported by the fluid.



Jupiter’s top-cloud level winds

Axes of alternating eastward and westward jets coincide with bound-
aries between belts and zone.



Z.onal jets in the ocean

From Maximenko et al. (2006).



The reminder of the talk

® Setup; KAM theorem; “strong KAM stability” [Rypina et al.,
2007a,b; FIBV et al., 2010].

® The Bickley jet; kinematic model of zonal eastward jet perturbed
with Rossby waves [del-Castillo-Negrete and Morrison, 1993; Ryp-
1na et al., 2007b; FJBV et al., 2010].

® The stratospheric austral polar night jet; eastward jet at the edge
of the stratospheric polar vortex in the austral winter/spring; strong
PV gradient associated; realistic simulation based on the Canadian

Middle-Atmosphere Model (CMAM) [FIBV et al., 2010, 2011].

® The stratospheric boreal summer subtropical jet; westward jet that
develops 1n the subtropics during the boreal summer/fall; weak PV
gradient associated; also based on CMAM [FIBV et al., 2011].

® Jovian jets; dynamically consistent nonlinear evolution of perturbed
PV-staircase flow [FIJBV et al., 2008].

® Ocean jets; satellite altimetry data [FIBYV, 2010; more in progress].



Hamiltonian setup

@ Fluid particle motion develops on R? obeying:

X = _BYW(X’ y’t)’ y — +axW(x, y’t)° (1)

Constitutes a nonautonomous one-degree-of-freedom Hamilto-
nian system with ¥ (streamfunction) Hamiltonian; x (zonal coordi-
nate) coordinate; and y (meridional coordinate) momentum.

® Very good approximation for stratospheric flows (strongly stratified,
predominantly balanced); harder to justify for Jovian and ocean
flows.

® The streamfunction 1s decomposed 1nto a steady unperturbed part
(undulating zonal jet) plus an unsteady perturbation (traveling
waves):

W(x,y,t)=h(x,y)—|—gr(x,y,f21t,---,SZNt), (2)

Here §2,t € T(= R/2mn7Z) where {§2,} are (relative) wave
frequencies and x moves with the speed of one of the waves.



® In a neighborhood of the jet’s axis we introduce
(1,0) € D x T, where D C R is closed and bounded:

1 y
I = EysX(y;h)dy, 0:=0;G, G(y, 1) 1=/O X(&;1)d§,(3)

where X is the (moving) zonal coordinate of an isoline of /.

® Background and perturbation Hamiltonian take the forms:

h(x,y) = H(I), (4a)
r(x,y,$21t,---,25t) = R(I,0,8t,---,82xt). (4b)

The variables (1, 8) evolve according to:
[ = —cdgR, 0 =w(l)+ cd;R, (4¢)
where

o(l) = H'(I). (4d)



KAM theorem for time-quasiperiodic Hamiltonians

Theorem. If the Hamiltonian H(I) + ¢R(I,0,821t,--- ,§2nN1) is
sufficiently smooth, if € > 0 is sufficiently small, the forcing fre-
quencies {82, } are sufficiently irrational, and unperturbed frequency
w(l) = H'(I) is not a constant, then the Hamiltonian H + &R admits
a measure-theoretically large set of invariant tori close to {1 = const}
with frequency w(Il) close to w(l) which vibrate with frequencies
182n5.

Proof. Uses Broer—Huitema-Takens theory of “unfoldings” of
invariant tor1 [cf. Sevryuk 2007].



Discrete and Continuous Dynamical Systems (DCDS-A)
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Remarks

® Admitted tori are Lagrangian (i.e., of maximal dimension), and thus
act as meridional transport barriers.

® Nondegeneracy condition w(/) # const differs from standard
(Kolmogorov) nondegeneracy condition w’(I) # 0:

> very weak nondegeneracy condition of Russmann’s type;

> allows one to prove admittance of many invariant tor1 even when
the “twist” vanishes (w’(I) = 0) at isolated [ -values;

> the relevance 1s that at a zonal jet’s axis the frequency of particle
motion has a local extremum, and hence w’(I) = 0 there.

® Unlike standard KAM theory, the frequency along admitted per-
turbed tor1 cannot be related with the frequency along unperturbed
tori:
> prevents one from speaking about “persistence” of invariant tori
[Sevryuk, 1995];
> for our purposes what really matters 1s that invariant tori can be
proved to be present, and that they serve as transport barriers.



“Strong KAM stability”

We have seen that many tori of H(I) + ¢R(1,0, $21¢,--- ,§2x1) can
be proved to “persist” a perturbation under certain conditions. We
now consider the possibility that degenerate (twistless) tor1 are more
resistant than nondegenerate ones.



A simple example of ‘“‘strong KAM stability”
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The integrable Hamiltonian H = [ w(/)dI and the nonintegrable
Hamiltonian perturbation with
21
R = cos(I + 0) Z cos 2,t, §2, =n + vy,
n=1

where {v,} are small and random and & = 0.025.



Resonance widths

® Torus destruction is accomplished via resonance (i.e., when w (1) /£2,
€ () for some n).

® The resonance widths:
nondegenerate torus : Aw ~ 81/2|a)’(])|1/2

Vs
degenerate torus : Aw ~ &2/3|w” (1)|*/3.

> Resonance widths are smaller for degenerate tori, there 1s less
possibility of frequency overlapping, and hence degenerate tori
may be expected to be more stable than nondegenerate tori.

> This type of stability has been referred to as “‘strong KAM
stability” 1n Rypina et al. [2007a].



KAM-like LCS identification

® Traditional phase space visualization techniques, such as the Poincaré
section, are not available when the Hamiltonian 1s time aperiodic or
given as a data set.

® The Finite-Time Lyapunov Exponent (FTLE), defined by

Afy(x0) = 2[z) ™ I AmaxCy " (x0) (5)

where C07 % (x¢) is the Cauchy—Green deformation tensor. Local
) 0 Y

maximizing curves or ridges of this field have been used to diagnose
hyperbolic LCS [Haller 2001, 2002].

® Because trajectories lying on invariant tori are regular, their infinite-
time LE are typically zero.

> FJBV et al. [2010] proposed that KAM-like LCS (a type of ellip-
tic LCS) should be 1dentified as topologically circular trenches of
backward-plus-forward FTLE field.

> FJBV et al. [2010] noted that rwistless KAM-like LCS should be
most easily 1identified using this technique.



Twistless tori and FTLE trenches

® In the integrable case = 0, h = w () we have:

A=——1In
2| 7| 2 4

1 2 + o'(I)?1? N \/(2 + co/(l)zrz)2

> As expected lim; s o0 A = 0.

> But for finite 7, A increases as w’([) increases (and vanishes
when o’ (1) = 0).

> For finite 7, the tori for which |w/(I)| is maximized produce

ridges in the FTLE field. Moreover, A ~ |t|~!In|w’(I)7| for
fixed w'(I) # 0 as T — 400, which tends to 0 slowly. This may
make 1t difficult to identify regular trajectories.

> But this ambiguity is reduced when |@’(I)] is small.

® Twistless tor1 are thus the ones that can be most easily detected using
FTLE.



The Bickley jet
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Note the thin band free of hyperbolic LCS near the jet axis; corre-
sponds to elliptic LCS. Being KAM-like can be identified as connected
trenches of backward-plus-forward FTLE field [FIBV et al., 2010].
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Trajectory integration confirms that identified FTLE trench is the locus
of an 1nvariant set.



Backward and forward FTLE trenches

Instantaneous area flux per unit length
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Flux estimate through FTLE trench is vanishingly small.
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The KAM-like LCS “dances” with the two (irrationally related)
frequencies of the perturbation field.



Stratospheric jets
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Trajectory integration on Jul—jets present near 20°N and 60°S
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Flux estimates through FTLE trenches are fairly small.



Planetocentric Latitude
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Trajectory integration and FTLE calculation based on velocity field
consistent with a nonlinear simulation based on the quasigeostrophic
PV equation initialized from a perturbed PV-staircase flow (i.e., with
step-like PV and alternating eastward and westward jets.



Southern Ocean jets
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Satellite altimetric sea surface topography (streamfunction) reveals
jets in the Pacific Sector of Southern Ocean.
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FTLE calculation insinuates the presence of features with properties
similar to KAM-like LCS.
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Trajectory integration reveals the presence of meridional transport
barriers.



Summary

® This talked has dealt with Lagrangian Coherent Structures (LCS)
of elliptic class—material curves that do not exhibit exponential
stretching and folding over a finite-time interval.

® Unlike hyperbolic LCS, which facilitate mixing, elliptic LCS pre-
vent mixing; both comprise the “skeleton” of the Lagrangian
circulation.

® Recent KAM-theory-related work has associated of elliptic LCS
analogous to KAM tori with zonal jet streams.

® Using a kinematic model of a perturbed meandering zonal jet, we
have shown that KAM-like LCS can be identified as connected
trenches of backward-plus-forward FTLE field.

® We have illustrated the presence of KAM-like LCS 1n stratospheric
winds produced by a realistic GCM.

® We have demonstrated the occurrence of KAM-like LCS in the
presence of Jovian-like jets and shown that KAM-like LCS may
be also found in the ocean.



Topics of future research

® Seasonality of stratospheric flows requires KAM theory to be
extended to topology changing unperturbed Hamiltonians.

® Nonzonal oceanic jets can sustain KAM-like LCS (e.g., Gulf
Stream). However, lack of periodicity calls for a different identi-
fication technique and appropriate physical/mathematical definition

of elliptic LCS.
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