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Hyperbolic LCS: transport and mixing
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Elliptic LCS: transport barrier
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The Antarctic “ozone hole”

Cold air confined within the stratospheric polar vortex and sunlight
facilitate the chemical reactions leading to natural ozone depletion;
best conditions achieved in the Austral springtime; stimulated by CFC
production, which was limited by the Montreal Protocol.
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Mount Pinatubo’s sulfur dioxide and dust aerosol plume

Approximately 45 days after the eruption on 12 June 1991, the aerosol
plume completely circled the Earth around the equator forming a band
20 to 50ı of latitude wide.
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Jupiter’s belts and zones

Belts (bright bands) and zones (dark bands) differ in chemical compo-
sition.
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Sea surface temperature fronts in the ocean

Courtesy C. Buckingham.
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Zonal jets as transport barriers

Version: May 8, 2012; Typeset on May 8, 2012,17:12 13



Seasonal variation of stratospheric zonally-averaged zonal
wind and potential vorticity from CMAM model
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The Potential Vorticity (PV) is a measure of swirl (including the
planetary rotation) which is transported by the fluid.
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Jupiter’s top-cloud level winds

Axes of alternating eastward and westward jets coincide with bound-
aries between belts and zone.
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Zonal jets in the ocean

From Maximenko et al. (2006).
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The reminder of the talk

� Setup; KAM theorem; “strong KAM stability” [Rypina et al.,
2007a,b; FJBV et al., 2010].

� The Bickley jet; kinematic model of zonal eastward jet perturbed
with Rossby waves [del-Castillo-Negrete and Morrison, 1993; Ryp-
ina et al., 2007b; FJBV et al., 2010].

� The stratospheric austral polar night jet; eastward jet at the edge
of the stratospheric polar vortex in the austral winter/spring; strong
PV gradient associated; realistic simulation based on the Canadian
Middle-Atmosphere Model (CMAM) [FJBV et al., 2010, 2011].

� The stratospheric boreal summer subtropical jet; westward jet that
develops in the subtropics during the boreal summer/fall; weak PV
gradient associated; also based on CMAM [FJBV et al., 2011].

� Jovian jets; dynamically consistent nonlinear evolution of perturbed
PV-staircase flow [FJBV et al., 2008].

�Ocean jets; satellite altimetry data [FJBV, 2010; more in progress].
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Hamiltonian setup

� Fluid particle motion develops on R2 obeying:

Px D �@y .x; y; t/; Py D C@x .x; y; t/: (1)

Constitutes a nonautonomous one-degree-of-freedom Hamilto-
nian system with  (streamfunction) Hamiltonian; x (zonal coordi-
nate) coordinate; and y (meridional coordinate) momentum.

�Very good approximation for stratospheric flows (strongly stratified,
predominantly balanced); harder to justify for Jovian and ocean
flows.

� The streamfunction is decomposed into a steady unperturbed part
(undulating zonal jet) plus an unsteady perturbation (traveling
waves):

 .x; y; t/ D h.x; y/C "r.x; y;˝1t; � � � ; ˝N t /; (2)

Here ˝nt 2 T.D R=2�Z/ where f˝ng are (relative) wave
frequencies and x moves with the speed of one of the waves.
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� In a neighborhood of the jet’s axis we introduce action–angle
variables .I; �/ 2 D � T, where D � R is closed and bounded:

I ´ 1

2�

I
X.yI h/dy; � ´ @IG; G.y; I /´

Z y

0
X.�I h/d�; (3)

where X is the (moving) zonal coordinate of an isoline of h.

� Background and perturbation Hamiltonian take the forms:

h.x; y/ D H.I/; (4a)
r.x; y;˝1t; � � � ; ˝N t / D R.I; �;˝1t; � � � ; ˝N t /: (4b)

The variables .I; �/ evolve according to:
PI D �"@�R; P� D !.I /C "@IR; (4c)

where

!.I /´ H 0.I /: (4d)
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KAM theorem for time-quasiperiodic Hamiltonians
Theorem. If the Hamiltonian H.I/ C "R.I; �;˝1t; � � � ; ˝N t / is
sufficiently smooth, if " > 0 is sufficiently small, the forcing fre-
quencies f˝ng are sufficiently irrational, and unperturbed frequency
!.I / D H 0.I / is not a constant, then the HamiltonianHC"R admits
a measure-theoretically large set of invariant tori close to fI D constg
with frequency $.I/ close to !.I / which vibrate with frequencies
f˝ng.

Proof. Uses Broer–Huitema–Takens theory of “unfoldings” of
invariant tori [cf. Sevryuk 2007].
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Discrete and Continuous Dynamical Systems (DCDS-A) 
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Remarks

�Admitted tori are Lagrangian (i.e., of maximal dimension), and thus
act as meridional transport barriers.
�Nondegeneracy condition !.I / ¤ const differs from standard

(Kolmogorov) nondegeneracy condition !0.I / ¤ 0:
F very weak nondegeneracy condition of Russmann’s type;
F allows one to prove admittance of many invariant tori even when

the “twist” vanishes (!0.I / D 0) at isolated I -values;
F the relevance is that at a zonal jet’s axis the frequency of particle

motion has a local extremum, and hence !0.I / D 0 there.
�Unlike standard KAM theory, the frequency along admitted per-

turbed tori cannot be related with the frequency along unperturbed
tori:
F prevents one from speaking about “persistence” of invariant tori

[Sevryuk, 1995];
F for our purposes what really matters is that invariant tori can be

proved to be present, and that they serve as transport barriers.
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“Strong KAM stability”
We have seen that many tori of H.I/C "R.I; �;˝1t; � � � ; ˝N t / can
be proved to “persist” a perturbation under certain conditions. We
now consider the possibility that degenerate (twistless) tori are more
resistant than nondegenerate ones.
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A simple example of “strong KAM stability”
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The integrable Hamiltonian H D R
!.I / dI and the nonintegrable

Hamiltonian perturbation with

R D cos.I C �/
21X
nD1

cos˝nt; ˝n D nC �n;

where f�ng are small and random and " D 0:025.
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Resonance widths

� Torus destruction is accomplished via resonance (i.e., when!.I /=˝n
2 Q for some n).

� The resonance widths:

nondegenerate torus W �! � "1=2j!0.I /j1=2
vs

degenerate torus W �! � "2=3j!00.I /j2=3:
F Resonance widths are smaller for degenerate tori, there is less

possibility of frequency overlapping, and hence degenerate tori
may be expected to be more stable than nondegenerate tori.
F This type of stability has been referred to as “strong KAM

stability” in Rypina et al. [2007a].
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KAM-like LCS identification

� Traditional phase space visualization techniques, such as the Poincaré
section, are not available when the Hamiltonian is time aperiodic or
given as a data set.
� The Finite-Time Lyapunov Exponent (FTLE), defined by

��t0.x0/´ .2j� j/�1 ln�maxC
t0C�
t0

.x0/ (5)

where C
t0C�
t0

.x0/ is the Cauchy–Green deformation tensor. Local
maximizing curves or ridges of this field have been used to diagnose
hyperbolic LCS [Haller 2001, 2002].
� Because trajectories lying on invariant tori are regular, their infinite-

time LE are typically zero.
F FJBV et al. [2010] proposed that KAM-like LCS (a type of ellip-

tic LCS) should be identified as topologically circular trenches of
backward-plus-forward FTLE field.
F FJBV et al. [2010] noted that twistless KAM-like LCS should be

most easily identified using this technique.
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Twistless tori and FTLE trenches

� In the integrable case PI D 0, P� D !.I / we have:

� D 1

2j� j ln

0B@2C !0.I /2�2
2

C
s�

2C !0.I /2�2�2
4

� 1

1CA :
FAs expected lim�!˙1� D 0.
F But for finite � , � increases as !0.I / increases (and vanishes

when !0.I / D 0).
F For finite � , the tori for which j!0.I /j is maximized produce

ridges in the FTLE field. Moreover, � � j� j�1 ln j!0.I /� j for
fixed !0.I / ¤ 0 as � ! ˙1, which tends to 0 slowly. This may
make it difficult to identify regular trajectories.
F But this ambiguity is reduced when j!0.I /j is small.

� Twistless tori are thus the ones that can be most easily detected using
FTLE.
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The Bickley jet

!.I / [d�1]

I
[M

m
2
]

Qx [Mm]

y
[M

m
]

0:5 0:6 0:7 0:8 0:90 10 20

2

0

�2

�4

�2

0

2

4

Qx [Mm]

y
[M

m
]

��T
0 �CT

0 ��T
0 C �CT

0

0 5 10 15 20
0

0:5

1

�4

�2

0

2

4

Note the thin band free of hyperbolic LCS near the jet axis; corre-
sponds to elliptic LCS. Being KAM-like can be identified as connected
trenches of backward-plus-forward FTLE field [FJBV et al., 2010].
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Trajectory integration confirms that identified FTLE trench is the locus
of an invariant set.
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Flux estimate through FTLE trench is vanishingly small.
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The KAM-like LCS “dances” with the two (irrationally related)
frequencies of the perturbation field.
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Stratospheric jets
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Trajectory integration on Jul—jets present near 20ıN and 60ıS

Trajectory integration on Jan—jets absent near 20ıN and 60ıS

Version: May 8, 2012; Typeset on May 8, 2012,17:12 33



'
[m

s�1
]

180ıW 90ıW 0ı 90ıE 180ıE
�30

�15

0

15

30

45

Flux estimates through FTLE trenches are fairly small.
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Jovian jets
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Trajectory integration and FTLE calculation based on velocity field
consistent with a nonlinear simulation based on the quasigeostrophic
PV equation initialized from a perturbed PV-staircase flow (i.e., with
step-like PV and alternating eastward and westward jets.
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Southern Ocean jets

Satellite altimetric sea surface topography (streamfunction) reveals
jets in the Pacific Sector of Southern Ocean.
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FTLE calculation insinuates the presence of features with properties
similar to KAM-like LCS.
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Trajectory integration reveals the presence of meridional transport
barriers.
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Summary
� This talked has dealt with Lagrangian Coherent Structures (LCS)

of elliptic class—material curves that do not exhibit exponential
stretching and folding over a finite-time interval.
�Unlike hyperbolic LCS, which facilitate mixing, elliptic LCS pre-

vent mixing; both comprise the “skeleton” of the Lagrangian
circulation.
� Recent KAM-theory-related work has associated of elliptic LCS

analogous to KAM tori with zonal jet streams.
�Using a kinematic model of a perturbed meandering zonal jet, we

have shown that KAM-like LCS can be identified as connected
trenches of backward-plus-forward FTLE field.
�We have illustrated the presence of KAM-like LCS in stratospheric

winds produced by a realistic GCM.
�We have demonstrated the occurrence of KAM-like LCS in the

presence of Jovian-like jets and shown that KAM-like LCS may
be also found in the ocean.
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Topics of future research

� Seasonality of stratospheric flows requires KAM theory to be
extended to topology changing unperturbed Hamiltonians.
�Nonzonal oceanic jets can sustain KAM-like LCS (e.g., Gulf

Stream). However, lack of periodicity calls for a different identi-
fication technique and appropriate physical/mathematical definition
of elliptic LCS.
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