Wolfgang Pauli Institute (WPI) Vienna 


Home  Practical Information for Visitors  Events  People  WPI Projects  
Login  Thematic Programs  Pauli Fellows  Talks  Research Groups 
Tournus Magali (École Centrale de Marseille)  OskarMorgensternPlatz 1, Hörsaal 2, ground floor.  Thu, 23. Nov 17, 14:15 
Scalar conservation laws with heterogeneous flux in the BV framework  
We consider a scalar conservation law with a flux containing spatial heterogeneities of bounded variation, where the number of discontinuities may be infinite. We address the question of existence of an adapted entropy solution in the BV framework. A sufficient key condition guaranteeing existence is identified and new BV estimates are given. This provides the most general BV theory available. Moreover, we show with a counterexample that if this hypothesis is violated, the problem may be illposed in the BV framework.  

Blakie Blair  WPI, OMP 1, Seminar Room 08.135  Fri, 23. Jun 17, 11:00 
Selfbound droplets of a dipolar BoseEinstein condensate  
Recent experiments with BoseEinstein condensates of dysprosium [1] and erbium [2] atoms have observed the formation of droplets that can preserve their form, even in the absence of any external confinement [3]. These droplets occur when the longranged dipoledipole interaction between the atoms dominates over the shortranged contact interaction. In this regime meanfield theory predicts that the condensate is unstable to collapse, however the LeeHuangYang corrections to the meanfield energy [3] can stabilize the system as one or many finite sized droplets. I will discuss our current understanding of these droplets, and introduce a new type of nonlinear Schrodinger equation used to describe their equilibrium and dynamical properties.  
Note: Click here for further information  

Yong Zhang  WPI, OMP 1, Seminar Room 08.135  Thu, 22. Jun 17, 14:00 
“Numerical methods/analysis for Schrödinger equations and micromagnetism”  
We present some mathematical methods occurring in the modeling and simulation of Nonlinear Schrödinger equations and nonlocal potentials. We focus on GrossPitaevskii equations describing Bose Einstein Condensates and stray field calculations in micromagnetism.  

François Golse  WPI, OMP 1, Seminar Room 08.135  Thu, 22. Jun 17, 10:00 
A convergence rate estimate for the semiclassical limit with Lipschitz continuous force field  
We propose an explicit bound for the convergence rate in the semiclassical limit for the Schrödinger equation which holds for potentials with Lipschitz continuous gradient. This bound is based on an analogue of the Wasserstein metric used in optimal transportation, adapted to measuring the distance between a quantum and a classical density.  

Olivier Pinaud (Colorado State University)  WPI, OMP 1, Seminar Room 08.135  Wed, 21. Jun 17, 14:00 
Waves in random media and applications  
We will review some results concerning uncertainties in the derivation of kinetic equations from wave propagation in random media, that is modeled by a wave or a Schroedinger equation. Kinetic equations usually describe quadratic quantities in the wavefield such as the energy or wavewave correlations, and can be used to solve some imaging problems in complex media.  

Shi Jin (University of WisconsinMadison and Shanghai Jiao Tong University)  WPI, OMP 1, Seminar Room 08.135  Wed, 21. Jun 17, 10:00 
Semiclassical computational methods for oscillatory and uncertain quantum dynamics with bandcrossings  
Bandcrossing is a quantum dynamical behavior that contributes to important physics and chemistry phenomena such as quantum tunneling, Berry connection, charge transfer, chemical reaction etc. In this talk, we will discuss some recent works in developing semiclassical methods for bandcrossing in surface hopping. For such systems we will also introduce an nonlinear geometric optics method based "asymptoticpreserving" method that is accurate uniformly for all wave numbers, including the problem with random uncertain band gaps.  

Mohammed Lemou  WPI, OMP 1, Seminar Room 08.135  Tue, 20. Jun 17, 15:30 
"Averaging techniques and application to numerical methods for highly oscillatory Vlasov and KleinGordon models"  
A brief description of averaging theory for highlyoscillatory problems will be first presented with an emphasis on the socalled classical and stroboscopic averaging methods. Then I will present two general strategies to construct efficient numerical schemes for a class of highly oscillatory PDEs: the soobtained numerical schemes have a uniform accuracy with respect to the frequency. Two applications will be considered: the Vlasov kinetic equation with strong magnetic field and the KleinGordon equation in the nonrelativistic regime.  

Olof Runborg (Mathematik Institution, Stockholm)  WPI, OMP 1, Seminar Room 08.135  Tue, 20. Jun 17, 10:00 
Uncertainty Quantification for High Frequency Wave Propagation  
We consider the wave equation with highly oscillatory initial data, where there is uncertainty in the wave speed, initial phase and/or initial amplitude. To estimate quantities of interest (QoI) related to the solution $u^\varepsilon$ and their statistics, we combine a highfrequency method based on Gaussian beams with sparse stochastic collocation. In the talk we will discuss how the rate of convergence for the stochastic collocation and the complexity of evaluating the QoI depend on the short wavelength $\varepsilon$. We find in particular that QoIs based on local averages of $\vert u^\varepsilon\vert ^2$ can give fast convergence rates, despite the fact that $u^\varepsilon$ is highly oscillatory in both physical and stochastic space.  

Cuesta Carlota  WPI, OMP 1, Seminar Room 08.135  Mon, 19. Jun 17, 15:00 
Analysis of travelling waves in a nonlocal Kortewegde VriesBurgers equation arising in a twolayer shallowwater model  
We study travelling wave solutions of a Kortewegde VriesBurgers equation with a nonlocal diffusion term. This model equation arises in the analysis of a shallow water flow by performing formal asymptotic expansions associated to the tripledeck regularisation (which is an extension of classical boundary layer theory). The resulting nonlocal operator is of fractional differential type with order between 1 and 2. Travelling wave solutions are typically analysed in relation to shock formation in the full shallow water problem. We show rigorously the existence of these waves in the case of a quadratic nonlinearity. The travelling wave problem for the classical KdVBurgers equation is usually analysed via a phaseplane analysis, which is not applicable here due to the presence of the nonlocal diffusion operator. Instead, we apply fractional calculus results available in the literature and a Lyapunov functional. In addition we discuss the monotonicity of the waves in terms of a control parameter and prove their dynamic stability in case they are monotone. We also discuss some partial results concerning the existence of travelling waves in the case of a cubic nonlinearity. This existence problem and the monotonicity of the waves in the quadratic case for a small dispersion term in relation with the diffusive one are still open problems, for this reason we have also developed numerical schemes in order to support our conjectures. We will discuss in a second part of the talk, a pseudospectral method that approximates the initial value problem. The basic idea is, using an algebraic map, to transform the whole real line into a bounded interval where we can apply a Fourier expansion. Special attention is given to the correct computation of the fractional derivative in this setting. Interestingly, there is a connection of the mapping method to fractional calculus, that we will also mention.  

Jinkai Li  WPI, OMP 1, Seminar Room 08.135  Fri, 16. Jun 17, 11:00 
Some mathematical analyses on two dynamical models for atmosphere with moisture (with Sabine Hittmeir, Rupert Klein, Edriss S. Titi)  
In this talk, we will present some recent mathematical results, mainly the global wellposedness and convergence of the relaxation limit, on two kinds of dynamical models for the atmosphere with moisture. In the rst part of this talk, which is a joint work with Edriss S. Titi [1], we will consider a tropical atmosphere model introduced by Frierson, Majda, and Pauluis (Commum. Math. Sci. 2004); for this model, we will present the global wellposedness of strong solutions and the strong convergence of the relaxation limit, as the relaxation time " tends to zero. It will be shown that, for both the nitetime and instantaneousrelaxation systems, the H1 regularities on the initial data are sucient for both the global existence and uniqueness of strong solutions, but slightly more regularities than H1 are required for both the continuous dependence and strong convergence of the relaxation limit. In the second part of this talk, which is a joint work with Sabine Hittmeir, Rupert Klein, and Edriss S. Titi [2], we will consider a moisture model for warm clouds used by Klein and Majda (Theor. Comput. Fluid Dyn. 2006), where the phase changes are allowed, and we will present the global wellposedness of this system. [1] Jinkai Li; Edriss S. Titi: A tropical atmosphere model with moisture: global well posedness and relaxation limit, Nonlinearity, 29 (2016), 2674{2714. [2] Sabine Hittmeir; Rupert Klein; Jinkai Li; Edriss S. Titi: Global wellposedness for passively transported nonlinear moisture dynamics with phase changes, arXiv:1610.00060  

Manuel Baumgartner  WPI, OMP 1, Seminar Room 08.135  Fri, 16. Jun 17, 10:00 
Diffusional Growth in Clouds (with Peter Spichtinger)  
Diusional growth is the most important growth mechanism for newly formed cloud droplets and ice crystals. Nonlinear diusion equations control the transport of water vapor towards the cloud particles. Although the solution of these diusion equations is circumvented in numerical cloud models, it remains computationally expensive to include the details of diusional growth due to severe timestep restrictions. Moreover, as soon as ice crystals are present in a cloud consisting mostly of cloud droplets, the Wegener BergeronFindeisen process becomes active and the ice crystals grow at the expense of the cloud droplets. In the rst part of the talk, we discuss the aspect of locality of the WegenerBergeron Findeisen process, i.e. an ice crystal does only aect its immediate vicinity. Its presence decouples the diusional growth behavior of nearby droplets from environmental conditions. We show some simulation results and a possible way to include locality in the context of bulkmicrophysics. The second part considers the case of a liquid cloud. In the context of numerical models, the microphysical details of the diusional growth and the timestep restrictions are eectively avoided through the technique of saturation adjustment. We will show some of these techniques and analyze an air parcel model containing activation of new droplets using asymptotics.  

Matthias Hieber  WPI, OMP 1, Seminar Room 08.135  Fri, 16. Jun 17, 9:00 
Thermodynamical Consistent Modeling and Analysis of HeatConducting Fluids  
In this talk, we derive and discuss thermodynamically consistent models for heatconduction fluids. Our approach is based on the entropy principle.  

Annette Muller  WPI, OMP 1, Seminar Room 08.135  Thu, 15. Jun 17, 15:30 
The DSI as an indicator for diabatic processes across the scales  
In atmospheric ows, the Dynamic State Index (DSI) indicates local deviations from a steady wind solution. This steady wind solution is based on the primitive equations under adiabatic and inviscid conditions. Hence, from theoretical point of view, atmospheric dynamics is regarded relative to a solution derived from uid mechanic's rst principles. Thus, this parameter provides a tool to capture diabatic processes. The DSI can be designed for dierent uid mechanical models on distinguished scales, we will introduce a DSIQG for the quasigeostrophic ow, a DSIRo for the Rossby model and DSImois that is based on the equations of motions including moisture processes.  

Wojciech W. Grabowski  WPI, OMP 1, Seminar Room 08.135  Thu, 15. Jun 17, 14:00 
Modeling condensation in cloudscale models  
Condensation of water vapor to form and grow cloud droplets is the most fundamental process of cloud and precipitation formation. It drives cloud dynamics through the release of latent heat and determines the strength of convective updrafts. Cloudscale models simulate condensation by applying two drastically dierent methods. The rst one is the bulk condensation where condensation/evaporation is assumed to always maintain saturated conditions. The second approach involves prediction of the incloud super or subsaturation and can be used in models that predict not only condensate mass but also relevant features of the droplet size distribution (e.g., models with the 2moment microphysics or with the bin microphysics). This presentation will address the question whether the dierence between the two approaches has a noticeable impact on convective dynamics. Model simulations with the bin microphysics for shallow nonprecipitating convection and with the doublemoment bulk microphysics for deep convection will be discussed to document the dierences in cloud eld simulations applying the two methodologies. For the shallow convection, the dierences in cloud eld simulated with bulk and bin schemes come not from small dierences in the condensation, but from more signicant dierences in the evaporation of cloud water near cloud edges as a result of entrainment and mixing. For the deep convection, results show a signicant dynamical impact of nite supersaturations and a strong microphysical eect associated with uppertropospheric anvils. Implications of these results for modeling convective dynamics will be discussed and a possible intermediate modeling methodology will be suggested.  

Piotr Smolarkiewicz  WPI, OMP 1, Seminar Room 08.135  Thu, 15. Jun 17, 11:00 
Finitevolume integrators for cloudresolving simulations of global atmospheric flows  
This work extends to moistprecipitating dynamics a recently documented highperformance nitevolume integrators for simulating global allscale atmospheric ows (doi:10.1016/j.jcp. 2016.03.015). A key objective of the current development is a seamless coupling of the conservation laws for moist variables engendered by cloud physics with the semiimplicit, nonoscillatory forwardintime integrators already proven for dry dynamics. The representation of the water substance and the associated processes in weather and climate models can vary widely in formulation details and complexity levels. The adopted representation assumes a canonical warmrain" bulk microphysics parametrisation, recognised for its minimal physical intricacy while accounting for the essential mathematical complexity of cloudresolving models. A key feature of the presented numerical approach is global conservation of the water substance to machine precision  implied by the local conservativeness and positivity preservation of the numerics  for all water species including water vapour, cloud water, and precipitation. The moist formulation assumes the compressible Euler equations as default, but includes reduced anelastic equations as an option. The theoretical considerations are illustrated with a benchmark simulation of a tornadic thunderstorm on a reduced size planet, supported with a series of numerical experiments addressing the accuracy of the associated water budget.  

Rupert Klein  WPI, OMP 1, Seminar Room 08.135  Thu, 15. Jun 17, 10:00 
The role of multiscale convection in hurricane intensication  
Paeschke et al (2012) showed analytically how nonaxisymmetric external diabatic forcing of a tilted vortex in dry air can amplify or attenuated the ow depending on the relative orientation of vortex tilt and the "heating dipole". Here we include a bulk moist microphysics closure and describe how boundary layer processes and multiscale deep moist convection can interact to produce this eect selfconsistently.  

Tom Dörffel  WPI, OMP 1, Seminar Room 08.135  Thu, 15. Jun 17, 9:00 
Intensification of atmospheric vortices through asymmetric diabatic heating (with Ariane Papke, Rupert Klein)  
The dynamics of atmospheric vortices such as tropical storms, hurricanes and midlatitude cyclones is driven by a variety of interacting scales. [1] developed an asymptotic theory for the dynamics of strongly tilted atmospheric vortices in the gradientwind regime, embedded into a synopticscale geostrophic background eld. One central outcome of the theory is the evolution equation for the nearly axisymmetric primary circulation. It predicts that Fouriermode 1 of asymmetric diabatic heating/ cooling patterns can spin up or spin down a vortex depending on the relative arrangement of the heating dipole relative to the vortex tilt. Based on this methodology further investigations led to the conclusion that this theory is generalizable to Rossby numbers of order 1 and higher, i.e. cyclostrophic balance. Accompaning the asymptotics numerical experiments are conducted to test the theory within an anelastic model [2]. In this talk we present the latest results showing consistency of numerical simulations and theoretical predictions. [1] E. Paschke, P. Marschalik, A. Z. Owinoh and R. Klein, Motion and structure of at mospheric mesoscale baroclinic vortices: dry air and weak environmental shear, J. Fluid Mech. 701: 137{170, (2012) [2] J. M. Prusa, P. K. Smolarkiewicz and A. A. Wyszogrodzki, EULAG, a computational model for multiscale ows, Comput. Fluids 37: 1193{1207 (2008)  

Boualem Khouider  WPI, OMP 1, Seminar Room 08.135  Wed, 14. Jun 17, 17:00 
A zonally symmetric model for the monsoonHadley circulation with stochastic convective forcing  
Idealized models of reduced complexity are important tools to understand key processes underlying a complex system. In climate science in particular, they are important for helping the community improve our ability to predict the eect of climate change on the earth system. Climate models are large computer codes based on the discretization of the uid dynamics equations on grids of horizontal resolution in the order of 100 km, whereas unresolved processes are handled by subgrid models. For instance, simple models are routinely used to help understand the interactions between smallscale processes due to atmospheric moist convection and largescale circulation patterns. Here, a zonally symmetric model for the monsoon circulation is presented and solved numerically. The model is based on the Galerkin projection of the primitive equations of atmospheric synoptic dynamics onto the rst modes of vertical structure to represent free tropospheric circulation and is coupled to a bulk atmospheric boundary layer (ABL) model. The model carries bulk equations for water vapor in both the free troposphere and the ABL, while the processes of convection and precipitation are represented through a stochastic model for clouds. The model equations are coupled through advective nonlinearities, and the resulting system is not conservative and not necessarily hyperbolic. This makes the design of a numerical method for the solution of this system particularly dicult. We develop a numerical scheme based on the operator timesplitting strategy, which decomposes the system into three pieces: a conservative part and two purely advective parts, each of which is solved iteratively using an appropriate method. The conservative system is solved via a central scheme, which does not require hyperbolicity since it avoids the Riemann problem by design. One of the advective parts is a hyperbolic diagonal matrix, which is easily handled by classical methods for hyperbolic equations, while the other advective part is a nilpotent matrix, which is solved via the method of lines. Validation tests using a synthetic exact solution are presented, and formal secondorder convergence under grid renement is demonstrated. Moreover, the model is tested under realistic monsoon conditions, and the ability of the model to simulate key features of the monsoon circulation is illustrated in two distinct parameter regimes. This is joint work with Michale De La Chevrotiare.  

Olivier Pauluis  WPI, OMP 1, Seminar Room 08.135  Wed, 14. Jun 17, 16:00 
Thermodynamic analysis of atmospheric motions  
In this talk, I will show how to extract thermodynamic cycles from high resolution simulations of atmospheric ows. On the one hand, thermodynamic processes are typically analyzed in terms of the behavior of individual parcel trajectories. On the other hand, most atmospheric ows are associated with innitely many turbulent lagrangian trajectories. The Mean Air Flow As Lagrangian Dynamics Approximation (MAFALDA) has been recently developed to address this problem. It MAFALDA, the ow is rst averaged in isentropic coordinates, typically pressure and equivalent potential temperature, and the mean ow is then treated as a set of thermodynamic cycles. This oer a systematic procedure to analyze the thermodynamic transformation in atmospheric ows, which is applied here to compare the thermodynamics behavior of convection and hurricanes.  

Sam Stechmann  WPI, OMP 1, Seminar Room 08.135  Wed, 14. Jun 17, 15:00 
Precipitating QuasiGeostrophic Equations and Minimal Cloud Mi crophysics  
Two simplied models are presented for precipitating atmospheric dynamics. First, a minimal version of cloud microphysics is presented. The time scales of all microphysical processes are assumed to be fast, and the resulting microphysics has only one parameter, the terminal velocity of falling rain drops. It is shown that, despite its simplicity, this minimal microphysics scheme can reproduce distinct canonical modes of convective organization (scattered convection and a squall line) under appropriate environmental conditions. This suggests that the essential physical processes underlying moist convection are simply phase changes and falling rain drops. Second, a precipitating version of the quasigeostrophic (QG) equations is presented. The precipitating QG (PQG) equations include phase changes between water vapor and liquid water, which arise as Heaviside nonlinearities in the new PQG PDEs. Finally, we present an initial application of the PQG equations, in a linearized setting that can be solved analytically, to understanding meridional moisture transport by baroclinic eddies.  

Didier Bresch  WPI, OMP 1, Seminar Room 08.135  Tue, 13. Jun 17, 14:00 
Mathematical analysis of relevant compressible geophysical models  
In this talk, we talk about mathematical results related to compressible uid systems with applications to geophysical flows. We focus on pressure laws, viscosity e ects, bifluid flows description. Some singular limits are also discussed.  

Didier Bresch  WPI, OMP 1, Seminar Room 08.135  Tue, 13. Jun 17, 11:00 
Mathematical analysis of relevant compressible geophysical models  
In this talk, we talk about mathematical results related to compressible uid systems with applications to geophysical flows. We focus on pressure laws, viscosity e ects, bifluid flows description. Some singular limits are also discussed.  

Olivier Pauluis  WPI, OMP 1, Seminar Room 08.135  Tue, 13. Jun 17, 9:00 
Tutorial 2: Thermodynamic cycles and heat engines  
The atmosphere can be describe as a heat engine that continuously generates kinetic energy by transporting energy from a warm source, i.e. the Earth surface, to a cold sink, i.e the colder troposphere. However, the ability of the atmosphere to generate kinetic energy is strongly reduced by the hydrological cycle. We will analyze how the impacts of moist processes can be a quantied in terms of a Gibbs penalty associated with the evaporation of water in unsaturated air and its removal as liquid water.  

Rupert Klein (FU Berlin)  OskarMorgensternPlatz 1, Hörsaal 4, ground floor.  Mon, 12. Jun 17, 17:00 
How Mathematics helps structuring climate discussions  
Mathematics in climate research is often thought to be mainly a provider of techniques for solving the continuum mechanical equations for the ows of the atmosphere and oceans, for the motion and evolution of Earth's ice masses, and the like. Three examples will elucidate that there is a much wider range of opportunities. Climate modellers often employ reduced forms of "the continuum mechanical equations" to eciently address their research questions of interest. The rst example discusses how mathematical analysis can provide systematic guidelines for the regime of applicability of such reduced model equations. Meteorologists dene "climate", in a narrow sense, as "the statistical description in terms of the mean and variability of relevant quantities over a period of time" (World Meteorological Society, http://www.wmo.int; see the website for a broader sense denition). Now, climate researchers are most interested in changes of the climate over time, and yet there is no unique, welldened notion of "time dependent statistics". In fact, there are restrictive conditions which data from time series need to satisfy for classical statistical methods to be applicable. The second example describes recent developments of analysis techniques for time series with nontrivial temporal trends. Modern climate research has joined forces with economy and the social sciences to generate a scientic basis for informed political decisions in the face of global climate change. One major type of problems hampering progress of the related interdisciplinary research consists of often subtle language barriers. The third example describes how mathematical formalization of the notion of "vulnerability" has helped structuring related interdisciplinary research eorts.  

Didier Bresch  WPI, OMP 1, Seminar Room 08.135  Mon, 12. Jun 17, 15:45 
Mathematical analysis of relevant compressible geophysical models  
In this talk, we talk about mathematical results related to compressible uid systems with applications to geophysical flows. We focus on pressure laws, viscosity eects, bifluid flows description. Some singular limits are also discussed.  

Olivier Pauluis  WPI, OMP 1, Seminar Room 08.135  Mon, 12. Jun 17, 14:05 
Tutorial 1: Thermodynamic properties of cloudy air  
In this tutorial, I will review the thermodynamic properties cloudy air and how they are typically treated in numerical models. This will include the concepts of saturation, equation of state for moist air, moist entropy and potential temperature of many kinds. We will then discuss the implications for buoyancy and convective processes.  

Human Rezaei (Inra JouyenJosas, France)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Thu, 8. Jun 17, 15:20 
Prion quasispecies and molecular basis of autoperpetuation of Prion structural information.  
Davy Martin1, Joan Torrent i Mas1, Stéphanie Prigent1, Mathieu Mezache2, Marie DoumicJauffret2, Vincent Béringue1 and Human Rezaei1* 1. National Institute for Agricultural Research (INRA), Pathological Macroassemblies and Prion Pathology group (MAP2), UR892, Virologie Immunologie Moléculaires, JouyenJosas, 78350F, France 2. Sorbonne Universités, Inria, UPMC Univ Paris 06, Lab. J.L. Lions UMR CNRS 7598, Paris, France The prion phenomenon is based on autonomous structural information propagation towards single or multiple protein conformational changes. Since this last decade the prion concept referring to the transmission of structural information has been extended to several regulation systems and pathologies including Alzheimer and Parkinson’s diseases. The unified theory in Prion replication implies structural information transference (SIT) from the prion to a nonprion conformer through a mechanism also called improperly, with regards to biophysical considerations “seeding” phenomenon. Therefore considering prion replication as a structural information transduction from a donor (i.e. template) to an acceptor (i.e. substrate) through a transduction interface a new questioning arises: what are molecular mechanisms of the autoperpetuation of the Prion structural information and its faithfulness? Considering the Prion propagation as more or less faithful perpetuation of structural information, in the present work, we explored the concept of prion quasispecies (i.e. existence of prion heterogeneous assemblies) and highlighted the existence of prion network, which has an autopoietic behaviour (autoreplicative). Our observations strongly suggest that specific criteria in term of: protein structure, delayprocess and thermokinetics should be collated before a system become dissipative and autopoietic.  

Sara MerinoAceituno (Imperial College, London, United Kingdom)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Thu, 8. Jun 17, 14:30 
A new flocking model through body attitude coordination  
We present a new model for multiagent dynamics where each agent is described by its position and body attitude: agents travel at a constant speed in a given direction and their body can rotate around it adopting different configurations. Agents try to coordinate their body attitudes with the ones of their neighbours. This model is inspired by the Vicsek model. The goal of this talk will be to present this new flocking model, its relevance and the derivation of the macroscopic equations from the particle dynamics. In collaboration with Pierre Degond (Imperial College London) and Amic Frouvelle (Université Paris Dauphine).  

Alexander K. Buell (Institute of Physical Biology, University of Düsseldorf)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Thu, 8. Jun 17, 13:50 
Kinetic and thermodynamic analysis of peptide selfassembly  
In this talk I will discuss various aspects of the kinetics and thermodynamics of the self assembly of peptides into amyloid fibrils and crystals. I will present a theoretical framework that allows to determine free energy barriers and entropies from kinetic data of amyloid fibril growth [1,2]. I will contrast the kinetic behaviour of longer, amyloid forming sequences with that of aromatic dipeptides that form crystals, rather than amyloid fibrils [3,4]. Furthermore, I will present the phenomenon of autocatalytic secondary nucleation, whereby new amyloid fibrils nucleate on the surface of existing ones [5,6]. In particular, I will show how this phenomenon manifests itself in kinetic measurements of protein aggregation, and how biosensing can be used to explore its molecular origin [6,7]. [1] A. K. Buell, J. R. Blundell, C. M. Dobson, M. E. Welland, E. M. Terentjev, and T. P. Knowles, Phys. Rev. Lett. 104, 228101 (2010). [2] A. K. Buell, A. Dhulesia, D. A. White, T. P. J. Knowles, C. M. Dobson, and M. E. Welland, Angew. Chem. Int. Ed Engl. 51, 5247 (2012). [3] T. O. Mason, T. C. T. Michaels, A. Levin, E. Gazit, C. M. Dobson, A. K. Buell, and T. P. J. Knowles, J. Am. Chem. Soc. 138, 9589 (2016). [4] T. O. Mason, A. Levin, C. M. Dobson, E. Gazit, T. P.J. Knowles and A. K. Buell, JACS under revision, (n.d.). [5] A. K. Buell, C. Galvagnion, R. Gaspar, E. Sparr, M. Vendruscolo, T. P. J. Knowles, S. Linse, and C. M. Dobson, Proc. Natl. Acad. Sci. 111, 7671 (2014). [6] R. Gaspar, G. Meisl, A. K. Buell, L. Young, C. F. Kaminski, T. P. J. Knowles, E. Sparr, and S. Linse, Q. Rev. Biophys. 50, (2017). [7] A. Šariæ, A. K. Buell, G. Meisl, T. C. T. Michaels, C. M. Dobson, S. Linse, T. P. J. Knowles, and D. Frenkel, Nat. Phys. 12, 874 (2016).  

Yi Yin (Inria Paris and Univ. Pierre et Marie Curie, France)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Thu, 8. Jun 17, 12:00 
Automated quantification of amyloid fibrils morphological features based on image analysis of transmission electron microscopies  
Yi Yin*, 1, Stéphanie Prigent1, Joan Torrent, Dirk Drasdo1, Human Rezaei, and Marie Doumic1 1. INRIA Paris, and Sorbonne Universités UPMC Univ. Paris 6, Laboratoire JacquesLouis Lions, Paris, France, * yi.yin@inria.fr Protein aggregation into fibrils is a key process in amyloid diseases and also in other biological processes. The quantification of fibrils’ morphology and molecular structures is urgently needed in understanding of the key mechanisms and properties of fibrils. In this study, we propose an automated image analysis procedure to extract and quantify fibril morphological features from transmission electron microscopy (TEM) images. Fibrils are segmented by a ‘maximum entropy’ thresholding method and then the ‘fast marching’ skeletonization is applied to detect the fibril centerlines. The individual information of each fibril is gathered based on the fibril segmentation and extracted centerline, including the length (following the curvature of the fibrils, which are rarely straight lines), the varying width along the length, the curvature, as well as the number, position and length of branches. The intricate overlapping and branching structures are identified based on the angles between fibril segments. The proposed method was tested on experiments on the prion protein (PrP), which also allows us to explain in detail the parameters needed for the image analysis. Our method has high estimation accuracy (e.g. width estimation as shown in the figure). The results from different mutants of the PrP protein fibrils showed the potential of the method in fibrils classification through a statistical analysis. Romain  

Frédéric Halgand (University ParisSud, France)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Thu, 8. Jun 17, 11:20 
Prion protein conformational landscape studied by mass spectrometry and ion mobility  
Guillaume van der Rest, Human, Rezaei, Frédéric Halgand, Université Paris Sud, Laboratoire de Chimie Physique Prion protein is involved in deadly neurodegenerative diseases. Its pathogenicity is linked to its structural conversion (ahelix to bstrand transition). However, recent studies suggest that prion protein can follow a plurality of conversion pathways which hints towards different conformers that might coexist in solution. We therefore decided to screen the ovine and human PrP monomers using ion mobility coupled to mass spectrometry following electrospray ionization. After a short presentation of ion mobility for studying ionized proteins in the gas phase, we will briefly discuss issues with the collision cross section calibration procedure that we have encountered when using travelling wave ion mobility. We will also discuss the development of an automated data extraction pipeline for which we developed a Python/Qt script base interface. Infusion of monomeric PrP solutions have shown that at least three PrP conformers are observed in the gas phase. PrP monomers are known to lead to the formation of oligomeric species in specific conditions (temperature, pH and buffer), which are not compatible with mass spectrometry. We have therefore developed a sizeexclusion chromatography IMSMS setup with the aim to study the oligomers produced in these conditions. The development of this SECIMSMS methodology will be presented as well as its application for calibration with standard protein complexes. Although we did not achieve resolution of the large (O1 ~36mer) oligomeric species, optimization of the experimental parameters led to the observation of the small (O3) oligomeric species. One key observation in this process was that the abundance of the gas phase monomeric conformers changed upon the oligomerization process. First results allow us to interpret this as an effect of monomer concentration on the ratio of conformers present in solution, which is observed only in specific buffer conditions.  

Magali Tournus (University of Marseille, France)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Thu, 8. Jun 17, 10:10 
Estimating the division rate and kernel in the fragmentation equation.  
We consider the pure fragmentation fragmentation equation and address the question of estimating the fragmentation parameters (division rate and fragmentation kernel) from measurements of the size distribution at various times. Under the assumption of a polynomial division rate and a selfsimilar fragmentation kernel, we use the wellknown asymptotic behaviour of the solution to guarantee the wellposedness of our inverse problem and provide a representation formula for the fragmentation kernel. The tools used are the Mellin transform and the WienerHopf method. Motivations for studying this problem and applications to amyloid fibril breakage will be described in the talk of W.F. Xue.  

WeiFeng Xue (University of Kent at Canterbury, United Kingdom)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Thu, 8. Jun 17, 9:30 
Nanoscale properties of amyloid fibril fragments  
A number of devastating human disorders, for example Alzheimer's disease (AD), Hungtington's diseases, type 2 diabetes and transmissible spongiform encephalopathies (TSEs), are associated with the abnormal folding and assembly of proteins. The net result of this misfolding is the formation of large insoluble protein deposits and small toxic and transmissible protein particles in a state called amyloid. What are the molecular mechanisms that govern the amyloid fibrils’ potential to seed the formation of new aggregates, to propagate the amyloid state as prion particles, and to damage cells in amyloidassociated diseases? We have developed AFM imaging approaches that are capable of resolving the fibril particle concentrations, their length distributions, as well as their toxic and infective potential to cells. With these approaches, we have shown that the diseaseassociated properties of amyloid can be linked to small nanosized amyloid particles created through the breakage of amyloid fibrils. The approaches we have developed offer new opportunities to determine, quantify, and predict the course and the consequences in amyloid assembly of cytotoxic, infectious as well as functional amyloid systems.  

Nicola Vettore, Institute of Physical Biology, University of Düsseldorf, Germany  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Wed, 7. Jun 17, 17:15 
Temperature dependence of amyloid fibril stability studied through equilibrium denaturation  
Nicola Vettore and Alexander K. Buell, Institute of Physical Biology, University of Düsseldorf Amyloid fibrils are thermodynamically very stable [1], but the origin of their enhanced stability with respect to the native state has not yet been elucidated in molecular detail. The high stabilities of amyloid fibrils render the study of their equilibrium behaviour challenging. One way to approach this issue, in direct analogy to the study of protein folding equilibria is denaturation with commonly used denaturants, such as GdmCl or Urea. A theoretical framework to extract from such measurements the free energy difference between the fibril state and the soluble state, based on Oosawa's linear polymerisation model, was proposed in [2]. Here we present experimental results of amyloid fibril equilibrium denaturation measured via capillary fluorescence over a wide range of temperatures. The data highlight how the influence of temperature seems of primary importance not only for the kinetics of fibril formation, but also for the thermodynamic stability of the fibrillar structures. We will also present our attempts to describe the temperaturedependence of fibril stability within a general thermodynamic framework. [1] A. J. Baldwin, T. P. J. Knowles, G. G. Tartaglia, A. W. Fitzpatrick, G. L. Devlin, S. L. Shammas, C. A. Waudby, M. F. Mossuto, S. Meehan, S. L. Gras, J. Christodoulou, S. J. AnthonyCahill, P. D. Barker, M. Vendruscolo, and C. M. Dobson, J. Am. Chem. Soc. 133, 14160 (2011). [2] T. Narimoto, K. Sakurai, A. Okamoto, E. Chatani, M. Hoshino, K. Hasegawa, H. Naiki, and Y. Goto, FEBS Lett. 576, 313 (2004).  

Mathieu Mézache, Inria Paris and Univ. Pierre et Marie C, France  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Wed, 7. Jun 17, 17:15 
An oscillatory kinetic model for the Prion aggregation process. From BelousovZhabotinsky reaction to a Prion polymerisation/depolymerisation chemical system.  
We investigate the oscillatory behaviour of the PrP protein during the polymerization/depolymerization process. In order to modelize this oscillatory process, we study a simplified BelousovZhabotinsky reaction from a kinetic point of view. This simplified oscillatory system of chemical reactions allows us to introduce a modified BeckerDöring system where the trajectories oscillate. A key to have a closed oscillatory polymerization/depolymerization system is to consider different specices of polymers and monomers. We finally present several system where the numerical simulations show a more or less sustained oscillatory behaviour.  

Angélique IgelEgalon, INRA JouyenJosas, France  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Wed, 7. Jun 17, 17:15 
Depolymerization instead of fragmentation spreads the replication unit of prion assemblies  
Reine1, CharlesAdrien Richard1, Tina Knäpple1 Vincent Béringue1* and Human Rezaei1* 1: INRA, UR892, Virologie Immunologie Moléculaires, JouyenJosas 78350, France *: Corresponding authors The prion phenomenon is based on autonomous structural information propagation towards single or multiple protein conformation changes. During this last decade the prion concept referring the transmission of structural information has been extended to several regulation systems and pathologies including Alzheimer and Parkinson’s diseases. Despite intensive investigation, the molecular basis of structural information transmission remains obscure. Templating (i.e. secondary nucleation as vector of structural information) has been proposed as origin of autocatalytic structural information perpetuation. However, the templating process does not consider the spreading process which consists in an exponential amplification of structural information. Active fibril fragmentation (AFF) constitutes a solution for exponential spreading and amplification of the structural information as strongly suggested in fungi prions (Shorter and Lindquist, Mol Cell, 2006). In the present work, we demonstrate that mammalian Prion assemblies (PrPSc) are constituted from an oligomeric elementary brick called suPrP. We show that in physiological conditions Prion assemblies are in equilibrium with suPrP. The existence of such equilibrium as simple depolymerization/condensation process is sufficient to spread the replicative unit through the release of suPrP, followed by its Brownian diffusion and condensation into PrPSc and discards the requirement of fragmentation for prion spreading.  

Marie Doumic (Inria Paris & Wolfgang Pauli Institute, France & Austria)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Wed, 7. Jun 17, 16:15 
Modelling protein polymerisation: results and open questions  
Mathematical modelling of protein polymerisation is a challenging topic, with wide applications, from actin filaments in myocytes (muscle tissues) to the socalled amyloid diseases (e.g. Alzheimer's, Parkinson's or CreuzfeldtJakob's diseases). In this talk, we will give an overview of recent results for both deterministic  where statistical mechanical fluctuations arising from intrinsic noise are negligible  and stochastic approaches, envisaged as giving complementary insights on the still largely mysterious intrinsic mechanisms of polymerisation. A data assimilation approach is developed in parallel of more specific methods for fragmentation estimation. The results we will present are partly joint work with A. Armiento, J. Calvo, S. Eugène, M. Escobedo, P. Moireau, B. Perthame, H. Rezaei, P. Robert, M. Tournus and W.F. Xue.  

Christian Schmeiser (University of Vienna and Wolfgang Pauli Institute, Austria)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Wed, 7. Jun 17, 14:10 
Homeostatic regulation of actin density at the leading edge of lamellipodia  
Some recent contributions to the modeling of the polymerization and depolymerization of actin filaments will be reviewed. Some results of the embedding of these models into the Filament Based Lamellipodium Model will be presented.  

Sascha Martens (Max F. Perutz Laboratories (MFPL), University of Vienna, Austria)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Wed, 7. Jun 17, 11:20 
Mechanism of p62mediated protein aggregation in selective autophagy  
Autophagosomes are double membranebound organelles that are formed de novo during a process called autophagy. Autophagosomes mediate the bulk degradation of cytoplasmic material such as aggregated proteins, dysfunctional or surplus mitochondria and intracellular pathogens. Autophagy is conserved from yeast to human and has been shown to protect the organism from conditions such as starvation, neurodegeneration and infectious diseases. During autophagosome formation initially small membrane structures termed isolation membranes are formed. These isolation membranes expand and thereby gradually enclose cytoplasmic cargo. Finally, isolation membranes close to give rise to mature autophagosomes. After their formation autophagosomes fuse with lysosomes within which their inner membranes and the contents are degraded. Autophagy has the ability to selectively capture and subsequently degrade aggregated and ubiquitinated proteins. This is mediated by the p62 cargo receptor, which is required for the aggregation of these proteins into larger structures. These structures then serve as templates for autophagosome formation. I will present our results from a fully reconstituted system, which enabled us to dissect the interplay between p62 and ubiquitin positive proteins during protein aggregation in selective autophagy.  

Laurent PujoMenjouet (University of Lyon, France)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Wed, 7. Jun 17, 10:10 
Modelling prion dynamics: a fruitful collaboration between mathematicians and biologists  
In a previous work by AlvarezMartinez et al. (2011), the authors pointed out some fallacies in the mainstream interpretation of the prion amyloid formation. It appeared necessary then to propose an original hypothesis able to reconcile the in vitro data with the predictions of a mathematical model describing the problem. The model presented here, has been developed accordingly with the hypothesis that an intermediate onpathway leads to the conformation of the prion protein into an amyloid competent isoform thanks to a structure, called micelles, formed from hydrodynamic interaction. Experimental data have been compared to the prediction of our model leading to a new hypothesis for the formation of infectious prion amyloids. In the last part, we will introduce a new model describing another dangerous liaison: the interaction between prion proteins and Abeta peptides that may lead to Alzheimer’s disease.  

Cassandra Terry, MRC Prion, UCL Institute of Technology, London, United Kingdom  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Wed, 7. Jun 17, 9:30 
Structural characterisation of ex vivo mammalian prions.  
Cassandra Terrya Adam Wenborna Nathalie Grosa Jessica Sellsa Susan Joinera Laszlo L.P. Hosszua M. Howard Tattuma Silvia Panicob Daniel K. Clareb, John Collingea, Helen R. Saibilb and Jonathan D.F. Wadswortha* a, MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK b, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK Prions cause lethal neurodegenerative diseases in mammals, including scrapie in sheep and goats, bovine spongiform encephalopathy (BSE) in cattle and Creutzfeldt–Jakob disease (CJD) in humans. Mammalian prions are hypothesised to be fibrillar or amyloid forms of prion protein (PrP) which selfpropagate by means of seeded protein polymerisation but structures observed had not been definitively correlated with infectivity and the threedimensional structure of prions remained unknown. We developed new methods to obtain pure preparations of intact prions from mouse brain1 and showed that pathogenic PrP is assembled into rodlike assemblies (PrP rods) that faithfully transmit prion strainspecific phenotypes when inoculated into mice. We have utilised the precision of cell culture prion infectivity assays to define the physical relationship between PrP rods and prion infectivity and used electron tomography to define their architecture. Our 3D analysis2 demonstrates that ex vivo infectious PrP rods from different strains observed have a common hierarchical assembly comprising twisted pairs of short fibres with repeating substructure which are markedly different to noninfectious PrP fibrils generated in vitro. References 1. A. Wenborn, C. Terry, N. Gros, S. Joiner, L. D’Castro, S. Panico, J. Sells, S. Cronier, J. Linehan, S. Brandner, H.R. Saibil, J. Collinge, J.D.F Wadsworth, Sci. Rep. A novel and rapid method for obtaining high titre intact prion strains from mammalian brain, 2015, 5, 10062. C. Terry, A. Wenborn, N. Gros, J. Sells, S. Joiner, L.L.P Hosszu, M.H. Tattum, S. Panico, D.K. Clare, J. Collinge, H.R. Saibil, J.D.F Wadsworth. Open Biology. Ex vivo mammalian prions are formed of paired double helical prion protein fibrils, 2016, 6, 160035.  

Romain Yvinec, INRA Tours, France  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Tue, 6. Jun 17, 16:50 
Time scales in a coagulationfragmentation model}  
This work is motivated by protein aggregation phenomena in neurodegenerative diseases. A key observation of invitro spontaneous polymerization experiments of prion protein is the large variability of the socalled 'nucleation time', which is experimentally defined as the lag time before the polymerization of proteins truly starts (typically several hours in a 1020 hours experiment). In this context, we study a stochastic version of a wellknown nucleation model in physics, namely the BeckerDöring model [1]. In this model, aggregates may increase or decrease their size onebyone, by capturing or shedding a single monomer particle. We will present numerical and analytical investigation of the nucleation time defined as a first passage time problem [2, 3]. Finally, we will present limit theorem techniques to study the link from the discrete size BeckerDöring model to a continuous size version (the LifshitzSlyozov model), which may be of importance to study large size aggregates formation. For general coefficients and initial data, we introduce a scaling parameter and show that the empirical measure associated to the BeckerDöring system converges in some sense to the LifshitzSlyozov equation when the scaling parameter goes to 0. When the aggregation is favorable, we derive a meanfield transport PDE limit together with an entrant boundary condition, leading to an effective reduced dynamical model [4]. When the aggregation is initially unfavorable, we shed light on metastable behavior and phase transition phenomena. [1] E. Hingant, R. Y., arXiv:1609.00697 (2016). [2] R. Y., M. R. D'Orsogna, and T. Chou. J. Chem. Phys., 137:244107, (2012). [3] R. Y., S. Bernard, E. Hingant, L. PujoMenjouet, J. Chem. Phys., 144(3):034106, (2016). [4] Julien Deschamps, Erwan Hingant, R.Y., arXiv:1605.08984 (2016).  

Vincent Béringue (Inra JouyenJosas, France)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Tue, 6. Jun 17, 16:10 
Small prion assemblies are involved in prion replication  
Angélique IgelEgalon1¶, Mohammed Moudjou1¶, Florent Laferrière1¶, Tina Knäpple1, Laetitia Herzog1, Fabienne Reine1, Hubert Laude1, Human Rezaei1*, Vincent Béringue1* 1VIM, INRA, Université ParisSaclay, 78350 JouyenJosas, France ¶Equal contributors, *Senior authorship Mammalian prions are proteinaceous pathogens responsible for fatal, neurodegenerative disorders in human and animals. They are formed of misfolded assemblies (PrPSc) of the hostencoded cellular prion protein (PrPC). In the infected species, prions replicate by seeding the conversion and polymerization of host PrPC. Distinct prion strains are recognized within the same hostspecies, exhibiting defined PrPSc biochemical properties and stereotyped biological traits. While strain information is encoded within the conformation of PrPSc assemblies, the storage of the structural information and the molecular requirements for selfperpetuation remain uncertain. In particular, the polymerization steps and its dynamic nature remains mostly hypothetical. It is widely believed that monomeric PrPC is constantly recruited within the forming aggregates allowing PrPSc fibril growth. Fibril fragmentation is supposed to provide further converting seeds, favouring prion exponential replication. Whether this proposed mechanism is versatile or straindependent remains to be determined, as is the real contribution of fragmentation. We have investigated this issue by analysing the dynamic of PrPSc assembling during cellfree prion amplification by protein misfolding cyclic amplification (PMCA). We show that: i) prion amplification occurs through preferential amplification of small oligomeric forms of PrPSc that can further assemble into larger aggregates; ii) disassembling rather than fragmentation sustains the selfperpetuation of the process, iii) different prion strains exhibit similar amplification dynamic. Thus, prion replication may proceed through an assembly/disassembly process.  

Klemens Fellner (University of Graz, Austria)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Tue, 6. Jun 17, 15:00 
Equilibration and QuasiSteadyState Asymptotics of a VolumeSurface ReactionDiffusion Model for Asymmetric Protein Localisation  
The protein Lgl (Lethal giant larvae) is part of a conserved protein complex, which is responsible for the asymmetric localisation of cellfate determinants, for instance, in Drosophila SOP precursor cells. We formulate continuum models, which consider the phosphorylated and the unphosphorylated conformations of Lgl within the cell cytoplasm and on the cell cortex. After presenting illustrative numerical simulations, we prove first the equilibration of the underlying complexbalance volumesurface reactiondiffusion system and perform further a rigorous quasisteadystateapproximation in a fastreaction limit.  

John H Viles, Queen Mary, University of London, United Kingdom  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Tue, 6. Jun 17, 14:20 
Cofibrillisation of truncated isoforms of Amyloidâ and ionchannel formation in Alzheimer’s Disease  
Amyloidâ peptide (Aâ) isoforms of different lengths and aggregation propensities coexist in vivo. These different isoforms are able to nucleate or frustrate the assembly of each other. Nterminal truncated Aâ(1140) and Aâ(1142) make up one fifth of plaque load yet nothing is known about their interaction with fulllength Aâ(140/42). Here we show that in contrast to Cterminal truncated isoforms which do not cofibrillise, deletions of ten residues from the Nterminus of Aâ have little impact on its ability to cofibrillise with the fulllength counterpart. As a consequence Nterminal truncated Aâ will accelerate fibre formation and coassemble into short rodshaped fibres with its fulllength Aâ counterpart. Furthermore we show Cu2+ forms a very tight tetragonal complex with truncated Aâ(1140) with a femtomolar affinity. These observations have implications for the assembly kinetics, morphology and toxicity of all Aâ isoforms. The process by which amyloidâ (Aâ) disrupts synaptic activity, and causes neuronal cell death in Alzheimer’s disease remains poorly understood. A potential mechanism of toxicity is in the ability of Aâ to form, membranespanning ion channels. However, there has been a mismatch between the channel forming properties of Aâ isoforms, 40 and 42 amino acids long, and their known relative pathogenicity. We observe ion channel formation by oligomeric Aâ42, but also show Aâ40 does not form ion channels in cellular membranes. This makes a strong link between ion channel formation and the pathology of Aâ isoforms. Molecules that block these ion channels may represent therapeutic targets. [1] Ion Channel Formation by Amyloidâ42 Oligomers but not Amyloidâ40 in Cellular Membranes DC Bode, MD Baker, JH Viles* (2017) J of Biol Chem 292, 14041413 [2] Truncated Amyloidâ (1140/42) from Alzheimer's Disease Binds Copper2+ with a Femtomolar Affinity and Influences Fibre Assembly J D Barritt, J H. Viles* (2015) J of Biol Chem, 290, 2779127802 [3] The Rapid Exchange of Zinc2+ Enables Trace Levels to Profoundly Influence Amyloidâ Misfolding and Dominates Assembly Outcomes in Cu2+/Zn2+ Mixtures C J Matheou, N D Younan, J H Viles* (2016) J Mol Biol 428, 28322846  

Impressum  webmaster [Printable version] 