Wolfgang Pauli Institute (WPI) Vienna 


Home  WPI in a nutshell  Practical Information  Events  People  WPI Projects 
Login  Thematic Programs  Pauli Fellows  Talks  Research Groups 
Benoit Perthame (Université Pierre et Marie Curie)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Fri, 28. Jul 17, 9:10 
Modeling of living tissues and free boundary asymptotics  

Michael Bergmann (Medical University, Vienna)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Fri, 28. Jul 17, 9:50 
The understanding of the DNA damage response in solid tumors and the development of oncolytic influenza viruses  

Anna MarciniakCzochra (University of Heidelberg)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Fri, 28. Jul 17, 10:50 
Mathematical Modeling of Clonal Dynamics in Acute Leukemias  

Heyrim Cho (University of Maryland)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Fri, 28. Jul 17, 11:30 
Modeling the chemotherapyinduced selection of drugresistant traits during tumor growth  

Michael Speicher (Medical University, Graz)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Fri, 28. Jul 17, 14:00 
Inferring expressed genes by wholegenome sequencing of plasma DNA  

Thomas Mohr (Medical University, Vienna)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Fri, 28. Jul 17, 14:40 
Deciphering gene coexpression networks in tumor endothelium  

Natalia Komarova (University of California, Irvine)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Fri, 28. Jul 17, 15:30 
Stochastic Calculus of Stem Cells  

Michael Breitenbach (University of Salzburg)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Fri, 28. Jul 17, 16:10 
The human NADPH oxidase, Nox4, its S. cerevisiae ortholog, Yno1, and its role in regulating the actin cytoskeleton  

Bernhard Englinger (Medical University, Vienna)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Fri, 28. Jul 17, 17:00 
Mathematical models to predict intracellular drug distribution – Do they work?  

Christoph Bock (Center for Molecular Medicine, Vienna)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Sat, 29. Jul 17, 9:00 
Bioinformatics for personalized medicine: Looking beyond the genome  

DanaAdriana Botesteanu (University of Maryland)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Sat, 29. Jul 17, 9:40 
Modeling cancer cell growth dynamics in vitro in response to antimitotics  

Maria LukácováMedvidová (University of Mainz)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Sat, 29. Jul 17, 10:30 
Mathematical and numerical modelling of cancer invasion  

Min Tang (Shanghai Jiao Tong University)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Sat, 29. Jul 17, 11:10 
The role of intracellular pathways on the E.coli population dynamics  

Dominik Wodarz (University of California, Irvine)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Sat, 29. Jul 17, 13:30 
Oncolytic virus therapy: Dynamics of virus spread at low infection multiplicities  

John King (University of Nottingham)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Sat, 29. Jul 17, 14:10 
Mathematical modeling of biological tissue growth  

Lisa Gabler (Medical University, Vienna)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Sat, 29. Jul 17, 15:10 
Coexpression networkbased identification of molecular subtypes in cancer  

James Greene (Rutgers University)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Sat, 29. Jul 17, 15:40 
The role of induced drug resistance in cancer chemotherapy  

Alexander Lorz (KAUST and Université Pierre et Marie Curie)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Sat, 29. Jul 17, 16:20 
Mathematics meets oncology: from Adaptive evolution to Zebrafish  

Michael Kniely  Seminar Room 08.135  Wed, 18. Oct 17, 0:00 
On two problems in the field of semiconductor materials and photovoltaics  
The first part of the talk is concerned with a semiconductor model including trapped states in an intermediate energy band. We will introduce a reactiondriftdiffusion system and employ the entropy approach in order to obtain an entropyentropy production (EEP) inequality. In particular, we shall focus on the derivation of the EEPinequality. Exponential convergence to the equilibrium is then a consequence of this EEPestimate. An interesting feature of our results is the fact that the EEPconstant, and hence the convergence rate, is independent of the average lifetime of an electron in a trapped state. In the second part of the talk, we will investigate a material design problem in the context of photovoltaics. We employ a quantummechanical model for a prescribed distribution of positive charges and the corresponding density of negative charges. By a lightinduced excitation, the electronic system may end up in an excited state possessing a different electronic structure. Our goal is to maximize the resulting spatial charge transfer as a function of the underlying nuclear charge distribution. A general existence proof regarding an optimal nuclear density as well as numerical results for a chain of atoms will be presented.  

Ascher, Uri (U. British Columbia)  OMP 1, Sky Lounge (12th floor)  Wed, 18. Apr 18, 14:00 
Numerical Methods in Visual Computing: what we can learn from each other  
Visual computing is a wide area that includes computer graphics and image processing, where the "eyeballnorm" rules. I will briefly discuss two case studies involving numerical methods and analysis applied to this area. The first case study involves motion simulation and calibration of soft objects such as plants, skin, and cloth. The governing elastodynamics PDE system, discretized in space already at the variational level using corotated FEM, leads to a large, expensive to assemble, dynamical system in time, where the damped motion may mask highly oscillatory stiffness. An exponential differencing method will be described, in search for more quantitative computations. The second case study involves some image processing problems where there is a premium for local approaches that do not necessarily use underlying PDEs. I will demonstrate and discuss.  

Zubelli, Jorge (IMPIA)  OMP 1, Sky Lounge (12th floor)  Wed, 18. Apr 18, 14:50 
A Nonintrusive Stratified Resampler for Regression Monte Carlo with Applications to ReactionDiffusion Equations  
Stochastic dynamic programming equations are classic equations arising in the resolution of nonlinear evolution equations, like in stochastic control. In this talk we address a technique to solve certain dynamic programming equations associated to a given Markov chain $X$, using a regressionbased Monte Carlo algorithm. More specifically, we assume that the model for $X$ is not known in full detail and only a root sample $X^1,\dots,X^M$ of such process is available. By a stratification of the space and a suitable choice of a probability measure, we design a new resampling scheme that allows to compute local regressions (on basis functions) in each stratum. The combination of the stratification and the resampling allows to compute the solution to the dynamic programming equation (possibly in large dimension) using only a relatively small set of root paths. To assess the accuracy of the algorithm, we establish nonasymptotic error estimates in L2 of the chosen measure. Our numerical experiments illustrate the good performance, even with as low as 20 to 40 root paths. This talk is based on joint work with Emmanuel Gobet and Gang Liu (E. Polytechnique, Paris) published in SIAM J. Numer. Anal., 56(1), 50?77. 2018.  

Burger, Martin (WWU Münster)  OMP 1, Sky Lounge (12th floor)  Wed, 18. Apr 18, 16:15 
“Propagation of gradient flow structures from microscopic to macroscopic models”  
In this talk we will discuss the propagation of gradient flow structures from microscopic models in statistical mechanics such as overdamped particle dynamics or interacting particle systems on lattices to macroscopic partial differential equations. The key insight is that microscopic models can be formulated as linear Markov chains in highdimensional spaces, e.g. via Liouville equations, for which recent work by Maas, Mielke and others has provided a rather complete picture. The propagation to macroscopic models is then carried out  at least formally  by constructing a metric structure on an associated infinite hierarchy of equations, resembling the BBGKY hierarchy in kinetic theory, and studying meanfield or other limits in this setup.  

Calvez, Vincent (ENS Lyon)  OMP 1, Sky Lounge (12th floor)  Thu, 19. Apr 18, 9:15 
Equilibria in quantitative genetic models  
I will describe recent results obtained in the asymptotic analysis of quantitative genetic models. I will focus on the adaptation of a population to a moving fitness optimum. Our methodology is able to handle agestructured populations, either reproducing in an asexual way or with a sexual mode of reproduction (namely Fisher's infinitesimal model).  

Nouri, Anne (U. Marseille)  OMP 1, Sky Lounge (12th floor)  Thu, 19. Apr 18, 10:05 
Bose condensates in interaction with excitations. Twocomponent spacedependent models close to equilibrium  
We consider models for Bose gases in the socalled 'hightemperature range' below the temperature where BoseEinstein condensation sets in. The first model is of nonlinear twocomponent type and vanishing force term, consisting of a kinetic equation with periodic boundary conditions for the distribution function of a gas of excitations interacting with a Bose condensate, which is described by the GrossPitaevskii equation. Results on wellposedness and long time behavior are proved in a Sobolev space setting close to equilibrium. The second model has a nonvanishing force term and is linearized around a spacehomogenous equilibrium.  

Gasser, Ingenuin (U. Hamburg)  OMP 1, Sky Lounge (12th floor)  Thu, 19. Apr 18, 11:25 
A few examples of alternative energy power stations: modelling, simulation and optimisation  
We discuss power stations based on solar thermal energy, on condensation and on pressure retarded osmosis. In all cases we aim to consider the complete power station and to optimize the net power output. This is done with respect to system parameters and also in the operational phase. Mathematically this relies on fluid dynamical models with a special emphasis on energy, its production mechanisms and the related energy losses.  

Small, Victor J. (IMBA)  OMP 1, Sky Lounge (12th floor)  Thu, 19. Apr 18, 14:00 
Moving cells and pathogens with actin: from structure to mathematical models  
Cell movement plays an essential role in diverse processes, not least during embryonic development and wound repair. Armies of mobile immune cells are likewise engaged in the defence of the body against invading pathogens. Cell movement has been a popular playground for mathematicians and there has been no shortage of theoretical models of how cells extend a thin sheet, a socalled “lamellipodium” at the cell front to initiate migration. Our recent application of electron tomography in studies of migrating cells provided the first complete structure of the branched actin networks that make up lamellipodia. These findings coincided with the timely collaboration with the group of Christian Schmeiser and the subsequent development of a realistic mathematical simulation of the actinmediated protrusion process. Actinbased protrusion is also used by certain viruses, which usurp the motile machinery of cells to spread their infection. These viruses move in cells by generating a comet tail of actin at their rear. Using again electron tomography we were able to determine, for the first time, the structural organization of actin comet tails. This structural information was then utilized in collaboration with the Schmeiser group to develop a new, more realistic mathematical model of pathogen propulsion. In conclusion, the fortuitous and timely interest of Christian Schmeiser in the cytoskeleton resulted in a productive and fruitful, interdisciplinary collaboration.  

Oelz, Dietmar (U. Queensland)  OMP 1, Sky Lounge (12th floor)  Thu, 19. Apr 18, 14:50 
Microtubule dynamics, kinesin1 sliding and dynein action drive growth of cell processes  
Intracellular transport is driven by molecular motors which pull cargo vesicles along cytoskeletal filaments. In a collaborative study combining experiments and Brownian Dynamics simulations we investigate cellular morphogenesis of neuron cells, namely establishment and growth of axons and dendrites, which is both driven by kinesin and dynein motors. We find that the growth of cellular processes depends critically on dynamical instability, i.e. alternating growing and shrinking, of microtubule fibres.  

Manhart, Angelika (NYU Courant)  OMP 1, Sky Lounge (12th floor)  Thu, 19. Apr 18, 16:10 
Traveling Waves in Cell Populations  
Transportreaction equations are abundant in the description of movement of motile organisms. In this talk I will focus on a system of coupled transportreaction equations that arises from an agestructuring of a species of turning individuals. The highlight consists of the explicit construction and characterization of counterpropagating traveling waves, patterns which have been observed in bacterial colonies, e.g. in earthdwelling myxobacteria. Fascinatingly, while the wave profiles do not change, the wave composition does and the fractions of reversible and nonreversible bacteria form waves traveling in the opposite direction. Stability analysis reveals conditions for wave formation as well as for pulsatingintime spatially constant solutions.  

Doumic, Marie (WPI & INRIA)  OMP 1, Sky Lounge (12th floor)  Thu, 19. Apr 18, 17:00 
Some entropybased results for linear and nonlinear aggregationfragmentation equations  
Entropybased methods, and in particular the socalled "generalised relative entropy" inequalities, have been developed and successfully applied to structured population equations, and in particular to aggregationfragmentation problems, over the last two decades. In this talk, we study how entropy methods have been recently extended to measure solutions [1] as well as to the convergence towards a periodic limit [2]. We also investigate the longtime dynamics of a family of nonlinear nucleationaggregation equations, for which specific entropy functionals may be built [3]. Ref: [1] Thomasz Debiec, Marie Doumic, Piotr Gwizada, Emil Wiedemann, Relative entropy method for measure solutions of a structured population model, 2018 [2] Etienne Bernard, Marie Doumic, Pierre Gabriel, Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts, 2016 [3] Juan Calvo, Marie Doumic, Benot Perthame, Longtime asymptotics for polymerization models, 2017  

Mouhot, Clement (U. Cambridge)  OMP 1, Sky Lounge (12th floor)  Fri, 20. Apr 18, 9:15 
De GiorgiNashMoser and H"ormander theories: new interplays  
We report on recent results and a new line of research at the crossroad of two major theories in the analysis of partial differential equations: the tools developed for studying elliptic or parabolic equations with rough coefficients on the one hand (De Giorgi, Nash, Moser, Krylov, Safonov), and the theory of hypoellipticity (H\"ormander) on the other hand. We discuss recent results about hypoelliptic equations of kinetic type with rough coefficients. We then discuss applications to the Boltzmann and Landau equations and present a program of research about the regularity for these equations, with some open questions.  

Raoul, Gael (X Palaiseau)  OMP 1, Sky Lounge (12th floor)  Fri, 20. Apr 18, 10:05 
Wasserstein estimates and macroscopic limits in a model from ecology  
We are interested in evolutionary biology models for sexual populations. The sexual reproductions are modelled through the socalled Infinitesimal Model, which is similar to an inelastic Boltzmann operator. This kinetic operator is then combined to selection and spatial dispersion operators. In this talk, we will show how the Wasserstein estimates that appear naturally for the kinetic operator can be combined to estimates on the other operators to study the qualitative properties of the solutions. In particular, this approach allows us to recover a wellknown (in populations genetics) macroscopic model.  

Cuesta, Carlotta (U. Basque Country)  OMP 1, Sky Lounge (12th floor)  Fri, 20. Apr 18, 11:25 
Some aspects of a nonlocal regularisation of scalar conversation laws  
We consider a regularisation of a scalar conservation law where the viscous term is a Caputo type fractional derivative of order between 1 and 2. We shall first focus on some recent results on the study travelling wave solutions of the Kortewegde VriesBurgers equation with such nonlocal viscous term, the third order one being local and linear. This model equation arises in the analysis of a shallow water flow by performing formal asymptotic expansions associated to the tripledeck regularisation (which is an extension of classical boundary layer theory). We show rigorously the existence of these waves in the case of a genuinely nonlinear flux and for the case of a non genuinely nonlinear one, we give results on the existence of the waves that do not satisfy the entropy condition. We shall also discuss the vanishing viscosity limit when the third order term is not present.  

Peter Markowich (WPI c/o U. Wien & KAUST)  OMP 1, Sky Lounge (12th floor)  Fri, 20. Apr 18, 14:00 
Discrete and continuum modeling of biological network formation  
Motivated by recent papers describing rules for natural network formation in discrete settings, we propose an ellipticparabolic system of partial differential equations. The model describes the pressure field due to Darcy’s type equation and the dynamics of the conductance network under pressure force effects with a diffusion rate representing randomness in the material structure. After a short overview of the principles of discrete network modeling, we show how to derive the corresponding macroscopic (continuum) description. The highly unusual structure of the resulting PDE system induces several interesting challenges for its mathematical analysis. We give a short overview of the tools and tricks that can be used to overcome them. In particular, we present results regarding the existence of weak solutions of the system, based on recent results on elliptic regularity theory. Moreover, we study the structure and stability properties of steady states that play a central role to understand the pattern capacity of the system. We present results of systematic numerical simulations of the system that provide further insights into the properties of the networktype solutions.  

Bouin, Emeric (U. ParisDauphine)  OMP 1, Sky Lounge (12th floor)  Fri, 20. Apr 18, 14:50 
Hypocoercivity without confinement  
In this talk, we will present some recent results on decay to zero for linear kinetic models with weak or without space confinement. Joint with Mouhot, Mischler, Dolbeault, Schmeiser.  

Impressum  webmaster [Printable version] 